Detail oboru

Mikroelektronika a technologie

FEKTZkratka: PK-METAk. rok: 2017/2018Zaměření: -

Program: Elektrotechnika a komunikační technologie

Délka studia: 4 roky

Akreditace od: 25.7.2007Akreditace do: 31.12.2020

Profil oboru

Studijní obor doktorského studia je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v nejrůznějších oblastech mikroelektroniky a elektrotechnologie, zejména pak v teorii, návrhu a testování integrovaných obvodů a systémů, v polovodičových prvcich a strukturách, v inteligentních senzorech, v optoelektronice, v elektrotechnických materiálech a výrobních procesech a ve zdrojích elektrické energie.
Cílem je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti, dát jím též potřebné speciální vědomosti i praktické dovednosti a naučit je metodám vědecké práce.

Klíčové výsledky učení

Absolvent umí řešit vědecké a složité technické úlohy v oblasti mikroelektroniky a elektrotechnologie.
Díky kvalitnímu rozvinutému teoretickému vzdělání a specializaci ve vybraném oboru jsou absolventi doktorského studia vyhledáváni jako specialisté v oblasti mikroelektroniky a elektrotechnologie.
Absolventi doktorského studijního programu budou v oblasti mikroelektroniky a elektrotechnologie schopni pracovat jako vědečtí a výzkumní pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci vývoje, konstrukce a provozu v různých výzkumných a vývojových institucích, elektrotechnických a elektronických výrobních firmách a společnostech a u výrobců či uživatelů elektrických systémů a zařízení, přičemž zde budou schopni tvůrčím způsobem využívat moderní výpočetní a měřicí techniku.

Profesní profil absolventů s příklady

Absolvent doktorského studia umí řešit vědecké a složité technické úlohy v oblasti mikroelektroniky a elektrotechnologie. Absolvent má obecné znalosti oboru na vysoké teoretické úrovni a jeho speciální znalosti jsou koncentrovány na úzkou oblast, ve které vypracoval svou disertační práci.
Vzhledem k šíři teoretického vzdělání je absolvent schopen se přizpůsobit požadavkům praxe v základním i aplikovaném výzkumu a absolventi doktorského studia jsou vyhledáváni jako specialisté ve všech oblastech mikroelektroniky a elektrotechnologie. Jsou schopni pracovat jako vědečtí a výzkumní pracovníci i jako řídicí pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci vývoje, konstrukce a provozu v různých výzkumných a vývojových institucích, elektrotechnických výrobních firmách a u uživatelů elektrických systémů a zařízení, přičemž všude budou schopni tvůrčím způsobem využívat moderní technologii.

Garant oboru

Vypsaná témata doktorského studijního programu

  1. Efektivní způsoby chlazení výkonových polovodičových součástek

    Studium způsobu chlazení výkonových polovodičových součástek, hlavně LED diod. Studium svítivosti LED diod v závislosti na teplotě. Simulace tepelných poměrů ve struktuře. Budou se řešit vrstvené struktury, spojení plošného spoje s kovovým jádrem a keramickým materiálem, Možnost chlazení proudící kapalinou ve vytvořených kanálcích. Disertabilní jádro: Návrh chladícího systému pro výkonové LED diody v kombinaci LTCC keramiky a Aluminy s chladícími kanálky pro kapalinu. Měření na systému.

    Školitel: Šandera Josef, doc. Ing., Ph.D.

  2. Metody stanovení spolehlivosti pájeného spoje v elektronice

    Teoretické studium jevů, které způsobují poruchovost pájeného spoje v elektronice (při termomechanickém namáhání). Měření a simulace (ANSYS) spolehlivosti konkrétních pájených spojů. Stanovení metodiky vyhodnocení a určení spolehlivosti, určení únavových koeficientů. Disertabilní jádro: Originální metodika výpočtu spolehlivosti a stanovení únavových koeficientů pro konkrétní aplikaci

    Školitel: Šandera Josef, doc. Ing., Ph.D.

  3. Návrh mikrosystémů využitelných v oblasti chytrých měst

    Cílem práce je návrh a aplikace nových mikroelektronických obvodů využitelných v systému chytrých měst. Práce bude zaměřena na využití nových obvodových principů umožňujících snížení spotřeby těchto systémů.

    Školitel: Šteffan Pavel, doc. Ing., Ph.D.

  4. Nové gelové polymerní elektrolyty

    Nové gelové polymerní elektrolyty pro lithno-iontové akumulátory s vyšší požární bezpečností a větší vodivostí. Příprava gelových elektrolytů na různých bázích s aditivy nanomateriálů, s iontovými kapalinami a s retardéry hoření.

    Školitel: Sedlaříková Marie, doc. Ing., CSc.

  5. Nové metody přípravy elektrochromních systémů

    Výzkum přípravy funkčních vrstev pro elektrochromní systémy vakuovými i nevakuovými metodami. Studium jejich chování a interkalační vlastnosti ve spojení s kapalnými a gelovými elektrolyty

    Školitel: Sedlaříková Marie, doc. Ing., CSc.

  6. Nové obvodové principy pro návrh analogových obvodů s nízkým příkonem a napájecím napětím

    Využití nových obvodových principů pro návrh analogových obvodů s nízkým příkonem a napájecím napětím. Obvody budou sloužit především v oblasti biomedicíny. Teoretický návrh a experimentální ověření analogových obvodů s nízkým napájecím napětím a nízkým příkonem za použití programu Cadence a technologie TSMC 0.18 um.

    Školitel: Khateb Fabian, doc. Ing. et Ing., Ph.D. et Ph.D.

  7. Odpařování a vlastnosti kovů ve vakuu - tenké kovové vrstvy

    Předmětem práce bude studium vlastností par kovových převážně ferromagnetických materiálů v procesu vakuového napařování. Budou zkoumány procesy vakuového napařování a jeich vliv na mechanické a elektrické vlastnosti vrstev. Disertabilní jádro: Stanovení nového technologického postupu napařování, který zaručí požadované vlastnosti tenké vrstvy.

    Školitel: Šandera Josef, doc. Ing., Ph.D.

  8. Perspektivní technologie pro termoelektrické generátory

    Termoelektrické generátory mohou využívat teplotních gradientů z přírodních zdrojů nebo teplotních gradientů při zpracování odpadního tepla. Tyto tepelné toky jsou hojné, předvídatelné a v omezeném časovém intervalu stabilní takže mohou posloužit jako spolehlivý zdroj energie v mnoha aplikacích. Malé napětí dosažitelné v jednom termoelementu vyžaduje integraci extrémně velkého počtu termočlánků nebo Peltiérových článků v jednom systému a jejich napojení na měniče pracující s extrémně malým napětím. Masovou produkci těchto systémů umožní využití organických polovodičů a tiskařských technologií.

    Školitel: Boušek Jaroslav, prof. Ing., CSc.

  9. Techniky pro návrh operačních zesilovačů s extrémně nízkým napájecím napětím

    Nové techniky pro návrh operačních zesilovačů s extrémně nízkým napájecím napětím. Cílové napájecí napětí je v rozmezí 0,5 V až 0,3 V a výkonová spotřeba v řádech nanometrů. Funkčnost a správnost navržené struktury bude popsána a ověřena jak matematicky, tak i simulačně za použití 0,18 µm CMOS technologie od TSMC.

    Školitel: Khateb Fabian, doc. Ing. et Ing., Ph.D. et Ph.D.

  10. Techologie pro tištěnou elektroniku

    Tištěná elektronika se velmi rychle rozvíjí a zasahuje do všech oblastí použití elektroniky, protože umožňuje vyrábět elektronická zařízení netradičním způsobem, ve velkém objemu a obvykle s velmi nízkými náklady. Je založena na použití nových, především organických, materiálů a nových nebo adaptovaných metodách tisku. V současné době jsou již dobře rozpracované metody hromadné výroby a vývoj se zaměřuje na návrh zařízení. Další rozšíření aplikačních možností se očekává po zavedení metod 3D tisku.

    Školitel: Boušek Jaroslav, prof. Ing., CSc.

  11. Techologie pro tištěnou elektroniku

    Tištěná elektronika se velmi rychle rozvíjí a zasahuje do všech oblastí použití elektroniky, protože umožňuje vyrábět elektronická zařízení netradičním způsobem, ve velkém objemu a obvykle s velmi nízkými náklady. Je založena na použití nových, především organických, materiálů a nových nebo adaptovaných metodách tisku. V současné době jsou již dobře rozpracované metody hromadné výroby a vývoj se zaměřuje na návrh zařízení. Další rozšíření aplikačních možností se očekává po zavedení metod 3D tisku.

    Školitel: Boušek Jaroslav, prof. Ing., CSc.


Struktura předmětů s uvedením ECTS kreditů (studijní plán)

1. ročník, zimní semestr
KódNázevJ.Kr.Sem.Pov.Uk.Sk.Ot.
DET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4zimníVolitelný oborovýdrzkano
DEE1Matematické modelování v elektroenergeticecs4zimníVolitelný oborovýdrzkano
DME1Mikroelektronické systémycs4zimníVolitelný oborovýdrzkano
DTK1Moderní síťové technologiecs4zimníVolitelný oborovýdrzkano
DRE1Návrh moderních elektronických obvodůcs4zimníVolitelný oborovýdrzkano
DFY1Rozhraní a nanostrukturycs4zimníVolitelný oborovýdrzkano
DTE1Speciální měřicí metodycs4zimníVolitelný oborovýdrzkano
DMA1Statistika. stochastické procesy, operační výzkumcs4zimníVolitelný oborovýdrzkano
DAM1Vybrané kapitoly řídicí technikycs4zimníVolitelný oborovýdrzkano
DVE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4zimníVolitelný oborovýdrzkano
DBM1Vyšší metody zpracování a analýzy obrazůcs4zimníVolitelný oborovýdrzkano
DJA6Angličtina pro doktorandycs4zimníVolitelný všeobecnýdrzkano
DRIZŘešení inovačních zadánícs2zimníVolitelný všeobecnýdrzkano
DEIZVědecké publikování od A do Zcs2zimníVolitelný všeobecnýdrzkano
1. ročník, letní semestr
KódNázevJ.Kr.Sem.Pov.Uk.Sk.Ot.
DTK2Aplikovaná kryptografiecs4letníVolitelný oborovýdrzkano
DMA2Diskrétní procesy v elektrotechnicecs4letníVolitelný oborovýdrzkano
DME2Mikroelektronické technologiecs4letníVolitelný oborovýdrzkano
DRE2Moderní digitální bezdrátová komunikacecs4letníVolitelný oborovýdrzkano
DTE2Numerické úlohy s parciálními diferenciálními rovnicemics4letníVolitelný oborovýdrzkano
DFY2Spektroskopické metody pro nedestruktivní diagnostikucs4letníVolitelný oborovýdrzkano
DET2Vybrané diagnostické metody, spolehlivost, jakostcs4letníVolitelný oborovýdrzkano
DAM2Vybrané kapitoly měřicí technikycs4letníVolitelný oborovýdrzkano
DBM2Vybrané problémy biomedicínského inženýrstvícs4letníVolitelný oborovýdrzkano
DEE2Vybrané problémy z výroby elektrické energiecs4letníVolitelný oborovýdrzkano
DVE2Vybrané statě z elektrických strojů a přístrojůcs4letníVolitelný oborovýdrzkano
DJA6Angličtina pro doktorandycs4letníVolitelný všeobecnýdrzkano
DCVPCitování ve vědecké praxics2letníVolitelný všeobecnýdrzkano
DRIZŘešení inovačních zadánícs2letníVolitelný všeobecnýdrzkano
1. ročník, celoroční semestr
KódNázevJ.Kr.Sem.Pov.Uk.Sk.Ot.
DQJAZkouška z angličtiny před státní doktorskou zkouškucs4celoročníPovinnýdrzkano