Branch Details

Microelectronics and Technology

Original title in Czech: Mikroelektronika a technologieFEKTAbbreviation: PK-METAcad. year: 2017/2018Specialisation: -

Programme: Electrical Engineering and Communication

Length of Study: 4 years

Accredited from: 25.7.2007Accredited until: 31.12.2020

Profile

The doctor study programme is devoted to the preparation of the high quality scientific and research specialists in various branches of microelectronics and electrotechnology, namely in theory, design and test of integrated circuits and systems, in semiconductor devices and structures, in smart sensors, in optoelectronics in materials and fabrication processes for electrical engineering, and in sources of electric energy.
The aim is to provide the doctor education in all these particular branches to students educated in university magister study, to make deeper their theoretical knowledge, to give them also requisite special knowledge and practical skills and to teach them methods of scientific work.

Key learning outcomes

The doctors are able to solve scientific and complex engineering tasks from the area of microelectronics and electrical technology
Wide fundamentals and deep theoretical basis of the study program bring high adaptability and high qualification of doctors for the most of requirements of their future creative practice in all areas of
microelectronics and electrotechnology.
The doctors are competent to work as scientists and researchers in many areas of basic research or research and development, as high-specialists in the development, design, construction, and application areas in many institutions, companies, and organisations of the electrical and electronics research, development, and industry as in the areas of electrical services and systems, inclusively in the special institutions of the state administration. In all of these branches they are able to work also as the leading scientific-, research-, development- or technical managers.

Occupational profiles of graduates with examples

The graduate of the doctoral study programme is able to solve scientific and complex engineering tasks in the field of microelectronics and technology for electrical engineering. The graduate has reached a high level of general theoretical knowledge in the branch and is further specialized in the area of his/her dissertation thesis.
Having broad theoretical knowledge, the PhD graduate is capable of meeting work requirements of both fundamental and applied research. The PhD graduates are sought out as specialists in all branches of microelectronics and technology. They are able to work as research workers, as members of management staff in fundamental or applied research, as design, construction or operation specialists in various research and development institutions, electronics manufacturing firms, and to work for various users of electronic systems and devices. They will be able to employ advanced technology everywhere in a creative way.

Supervisor

Issued topics of Doctoral Study Program

  1. Design of new microsystems for Smart Cities

    The aim of the work is focused to design new microelectronics structures for smart cities. This work will target on using new circuit principles allowing a reduction of electricity consumption of these systems.

    Tutor: Šteffan Pavel, doc. Ing., Ph.D.

  2. Effective methods cooling of semiconductor devices

    Study way of cooling power semiconductor devices, mainly LED diodes. Study luminous efficiency of LED´s with temperature. Computer simulation temperature ratios in structure. Will be solved multilayer structures, connecting of printed board with metal core and ceramic materials. It will be possibility cooling with liquid flow in channels. Dissertable core: Design of cooling system for power LED diodes with combination LTCC, Alumina with cooling channels for liquid. Student will measure on it.

    Tutor: Šandera Josef, doc. Ing., Ph.D.

  3. Evaporating and properties metals in vacuum - thin metal layers

    Items of work will be study properties of metals mostly ferromagnetic materials in eveporating process. Will be examinating vacuum evaporating process and their influence on mechanical and electrical properties og layers. Disertable core: Determine new techological procedure of evaporation, which enable required properties.

    Tutor: Šandera Josef, doc. Ing., Ph.D.

  4. Methods for determine reliability of solder joint in electronic

    Theoretical study failure phenomenas of solder joint using in electronic. Measuring and simulation (ANSYS) reliability of real solder joints. Determine of diagnostic methodology and define reliability. Determine of fatique coefficients. Core of disertability: Original calculating methodology for determine of fatique coefficients for specific application.

    Tutor: Šandera Josef, doc. Ing., Ph.D.

  5. New circuit principles for low-voltage low-power analog circuits design

    Utilizing new circuit principles for low-voltage low-power analog circuit design. These circuits serve mainly in biomedical area. Theoretical design and experimental evaluations using program Cadence with technology 0.18 um from TSMC.

    Tutor: Khateb Fabian, doc. Ing. et Ing., Ph.D. et Ph.D.

  6. New methods of preparing electrochromic systems

    Research on the preparation of active layers for electrochromic systems by vacuum and nonvacuum methods. Study their behavior and intercalation properties with liquid electrolytes and gel electrolytes

    Tutor: Sedlaříková Marie, doc. Ing., CSc.

  7. New polymer gel electrolytes

    The new gel polymer electrolytes for lithium-ion batteries with higher fire safety and greater conductivity. Preparation of gel electrolytes on different bases with additives nanomaterials with ionic liquids and fire retardants.

    Tutor: Sedlaříková Marie, doc. Ing., CSc.

  8. Operational amplifiers design techniques with extremely low voltage supply

    New design techniques for operational amplifiers with extremely low voltage supply. The voltage supply target is in range of 0.5-0.3V with power consumption in range of nanoamperes. The function of the proposed structures will be described and simulated by using 0.18 µm CMOS technology from TSMC.

    Tutor: Khateb Fabian, doc. Ing. et Ing., Ph.D. et Ph.D.

  9. Perspective technologies for thermoelectric generators

    Thermoelectric generators can utilize temperature gradients from natural sources or temperature gradients during the processing of waste heat. These heat flows, they are abundant, predictable and steady for a limited time - so it can serve as a reliable energy source in many applications. Very low voltage achievable in one thermocouple requires integration of an extremely large number of thermocouples or Peltier TEC modules in one system and their connection to the inverter operating with extremely low voltage. Use of organic semiconductors and printing technologies allows mass production of these systems.

    Tutor: Boušek Jaroslav, prof. Ing., CSc.

  10. Techology for printed electronics

    Printed electronics is developing rapidly and reaches into all areas of use of electronics, because it allows to produce electronic equipment in an unusual way, in large volumes and usually at very low cost. It is based on the use of new, organic, materials and new or adapted methods of printing. Currently there are already well-developed methods of mass production and development focuses on the design of the equipment. Further extension of application possibilities is expected after the introduction of 3D printing methods.

    Tutor: Boušek Jaroslav, prof. Ing., CSc.

  11. Techology for printed electronics

    Printed electronics is developing rapidly and reaches into all areas of use of electronics, because it allows to produce electronic equipment in an unusual way, in large volumes and usually at very low cost. It is based on the use of new, organic, materials and new or adapted methods of printing. Currently there are already well-developed methods of mass production and development focuses on the design of the equipment. Further extension of application possibilities is expected after the introduction of 3D printing methods.

    Tutor: Boušek Jaroslav, prof. Ing., CSc.


Course structure diagram with ECTS credits

1. year of study, winter semester
AbbreviationTitleL.Cr.Sem.Com.Compl.Gr.Op.
DET1Electrotechnical materials, material systems and production processescs4winterOptional specializedDrExyes
DEE1Mathematical Modelling of Electrical Power Systemscs4winterOptional specializedDrExyes
DME1Microelectronic Systemscs4winterOptional specializedDrExyes
DTK1Modern network technologiescs4winterOptional specializedDrExyes
DRE1Modern electronic circuit designcs4winterOptional specializedDrExyes
DFY1Junctions and nanostructurescs4winterOptional specializedDrExyes
DTE1Special Measurement Methodscs4winterOptional specializedDrExyes
DMA1Statistics, Stochastic Processes, Operations Researchcs4winterOptional specializedDrExyes
DAM1Selected chaps from automatic controlcs4winterOptional specializedDrExyes
DVE1Selected problems from power electronics and electrical drivescs4winterOptional specializedDrExyes
DBM1Advanced methods of processing and analysis of imagescs4winterOptional specializedDrExyes
DJA6English for post-graduatescs4winterGeneral knowledgeDrExyes
DRIZSolving of innovative taskscs2winterGeneral knowledgeDrExyes
DEIZScientific publishing A to Zcs2winterGeneral knowledgeDrExyes
1. year of study, summer semester
AbbreviationTitleL.Cr.Sem.Com.Compl.Gr.Op.
DTK2Applied cryptographycs4summerOptional specializedDrExyes
DMA2Discrete Processes in Electrical Engineeringcs4summerOptional specializedDrExyes
DME2Microelectronic technologiescs4summerOptional specializedDrExyes
DRE2Modern digital wireless communicationcs4summerOptional specializedDrExyes
DTE2Numerical Computations with Partial Differential Equationscs4summerOptional specializedDrExyes
DFY2Spectroscopic methods for non-destructive diagnostics cs4summerOptional specializedDrExyes
DET2Selected diagnostic methods, reliability and qualitycs4summerOptional specializedDrExyes
DAM2Selected chaps from measuring techniquescs4summerOptional specializedDrExyes
DBM2Selected problems of biomedical engineeringcs4summerOptional specializedDrExyes
DEE2Selected problems of electricity productioncs4summerOptional specializedDrExyes
DVE2Topical Issues of Electrical Machines and Apparatuscs4summerOptional specializedDrExyes
DJA6English for post-graduatescs4summerGeneral knowledgeDrExyes
DCVPQuotations in a research workcs2summerGeneral knowledgeDrExyes
DRIZSolving of innovative taskscs2summerGeneral knowledgeDrExyes
1. year of study, both semester
AbbreviationTitleL.Cr.Sem.Com.Compl.Gr.Op.
DQJAEnglish for the state doctoral examcs4bothCompulsoryDrExyes