Detail předmětu

Maticový a tenzorový počet

FEKT-MMATAk. rok: 2019/2020

Matice jako algebraická struktura. Operace s maticemi. Determinant. Matice v soustavách lineárních algebraických rovnic. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů. Lineární zobrazení vektorových prostorů a jeho maticové vyjádření. Skalární součin, ortogonální průmět a prvek nejlepší aproximace. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic. Bilineární a kvadratické formy, definitnost kvadratických forem. Lineární formy a tenzory. Různé typy souřadnic. Kovariantní, kontravariantní a smíšené tenzory. Operace s tenzory. Tenzorový antisymetrický vnější součin. Antilineární formy. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory. Samoadjungovaný lineární operátor. Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox. Kvantové výpočty. Matice hustoty. Kvantová teleportace.

Zajišťuje ústav

Výsledky učení předmětu

Zvládnutí základních postupů při řešení úloh a úkolů z maticového a tenzorového počtu a jejich aplikací.

Prerekvizity

Je požadováno zvládnutí učiva předmětu BMA1 Matematika 1. Absolvování předmětu BMAS Matematický seminář je doporučeno.

Doporučená nebo povinná literatura

Havel V., Holenda J.: Lineární algebra, SNTL, Praha 1984.
Hrůza B., Mrhačová H.: Cvičení z algebry a geometrie. Ediční stř. VUT 1993, skriptum
Schmidtmayer J.: Maticový počet a jeho použití, SNTL, Praha, 1967.
Boček L.: Tenzorový počet, SNTL Praha 1976.
Angot A.: Užitá matematika pro elektroinženýry, SNTL, Praha 1960.
Kolman, B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
Kolman, B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1991.
Gantmacher, F. R., The Theory of Matrices, Chelsea Publ. Comp., New York 1960.
Demlová, M., Nagy, J., Algebra, STNL, Praha 1982.
Plesník J., Dupačová J., Vlach M., Lineárne programovanie, Alfa, Bratislava , 1990.
Mac Lane S., Birkhoff G., Algebra, Alfa, Bratislava, 1974.
Mac Lane S., Birkhoff G., Prehľad modernej algebry, Alfa, Bratislava, 1979.
Krupka D., Musilová J., Lineární a multilineární algebra, Skriptum Př. f. MU, SPN, Praha, 1989.
Procházka L. a kol., Algebra, Academia, Praha, 1990.
Halliday D., Resnik R., Walker J., Fyzika, Vutium, Brno, 2000.
Crandal R. E., Mathematica for the Sciences, Addison-Wesley, Redwood City, 1991.
Davis H. T., Thomson K. T., Linear Algebra and Linear Operators in Engineering, Academic Press, San Diego, 2007.
Mannuci M. A., Yanofsky N. S., Quantum Computing For Computer Scientists, Cambridge University Press, Cabridge, 2008.
Nahara M., Ohmi T., Quantum Computing: From Linear Algebra to Physical Realizations, CRC Press, Boca Raton, 2008.
Griffiths D. Introduction to Elementary Particles, Wiley WCH, Weinheim, 2009.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Semestrální zkouška je hodnocena maximálně 70 body. Ze cvičení je možné získat maximálně 30 bodů, z nichž 20 bodů připadá na písemné testy a 10 bodů na řešení dvou projektů, každý po 5 bodech.

Jazyk výuky

čeština

Osnovy výuky

1. Matice jako algebraická struktura. Operace s maticemi. Determinant.
2. Matice v soustavách lineárních algebraických rovnic.
3. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů.
4. Lineární zobrazení vektorových prostorů a jeho maticové vyjádření.
5. Skalární součin, ortogonální průmět a prvek nejlepší aproximace.
6. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic.
7. Bilineární a kvadratické formy, definitnost kvadratických forem.
8. Lineární formy a tenzory. Různé typy souřadnic. Kovariantní, kontravariantní a smíšené tenzory.
9. Operace s tenzory. Tenzorový a antisymetrický vnější součin. Antilineární formy.
10. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory.
11. Samoadjungovaný lineární operátor. Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace.
12. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox.
13. Kvantové výpočty. Matice hustoty. Kvantová teleportace.

Cíl

Zvládnout základy maticového a tenzorového počtu a jejich aplikace.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program IT-MGR-2 magisterský navazující

    obor MBS , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MBI , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MIS , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MIN , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MMI , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MMM , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MGM , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MPV , libovolný ročník, letní semestr, 5 kreditů, volitelný
    obor MSK , libovolný ročník, letní semestr, 5 kreditů, volitelný

  • Program MITAI magisterský navazující

    specializace NBIO , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NISD , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NISY , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NIDE , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NCPS , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NSEC , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NMAT , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NGRI , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NNET , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NVIZ , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NSEN , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NMAL , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NVER , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NEMB , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NADE , libovolný ročník, letní semestr, 5 kreditů, volitelný
    specializace NSPE , libovolný ročník, letní semestr, 5 kreditů, volitelný

  • Program AUDIO-P magisterský navazující

    obor P-AUD , 1. ročník, letní semestr, 5 kreditů, volitelný mimooborový

  • Program EEKR-M1 magisterský navazující

    obor M1-EEN , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba
    obor M1-EST , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba
    obor M1-EVM , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba
    obor M1-KAM , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba
    obor M1-SVE , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba
    obor M1-TIT , 1. ročník, letní semestr, 5 kreditů, teoretická nadstavba

  • Program IBEP-V magisterský navazující

    obor V-IBP , 1. ročník, letní semestr, 5 kreditů, povinný

  • Program MITAI magisterský navazující

    specializace NHPC , 1. ročník, letní semestr, 5 kreditů, povinný

  • Program AUDIO-P magisterský navazující

    obor P-AUD , 2. ročník, letní semestr, 5 kreditů, volitelný mimooborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení s poč. podporou

18 hod., povinná

Vyučující / Lektor

Ostatní aktivity

8 hod., povinná

Vyučující / Lektor