Detail předmětu
Matematika 5 (K)
FAST-CA002Ak. rok: 2019/2020
Rešení nelineárních rovnic pro jednu a více neznámých, iterační metody řešení systémů lineárních algebraických rovnic.
Interpolace a aproximace funkce, numerické derivování a numerická integrace, numerické metody pro řešení úloh vedení tepla a průhybu nosníku v jedné dimenzi.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Ústav matematiky a deskriptivní geometrie (MAT)
Výsledky učení předmětu
Výstupem předmětu jsou znalosti a schopnosti, které studentům umožní pochopení základních numerických úloh a myšlenek, na nichž jsou založeny algoritmy jejich řešení. Ve své bodoucí praxi v oboru svého studia budou schopni posoudit použitelnost numerických metod pro řešení technických problémů a efektivně používat existujících univerzálních programových systémů pro řešení základních typů numerických úloh i jejich budoucích zdokonalení.
Prerekvizity
Ovládat elementární pojmy teorie funkcí jedné reálné proměnné (derivace, limita a spojitost, elementární funkce). Umět počítat urřité integrály, znát jejich základní aplikace.
Osnovy výuky
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10. Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11. Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12. Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13. Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10. Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11. Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12. Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13. Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků
Učební cíle
Pochopit základní principy numerických výpočtů a seznámit se s faktory, které ovlivňují numerické výpočty. Umět řešit vybrané základní úlohy numerické matematiky. Pochopit princip iteračních metod řešení rovnice f(x)=0 a systémů lineárních algebraických rovnic, zvládnout výpočetní algoritmy. Seznámit se s problematikou interpolace a aproximace funkcí a naučit se úlohy prakticky řešit. Znát principy numerické derivace a umět numericky řešit okrajové úlohy pro obyčejné diferenciální rovnice. Naučit se numerickým výpočtům určitých integrálů. Pochopit numerické metody pro řešení úloh vedení tepla a průhybu nosníku v jedné dimenzi.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Zařazení předmětu ve studijních plánech
- Program N-K-C-SI (N) magisterský navazující
obor K , 1 ročník, zimní semestr, povinný
- Program N-P-C-SI (N) magisterský navazující
obor K , 1 ročník, zimní semestr, povinný
- Program N-P-E-SI (N) magisterský navazující
obor K , 1 ročník, zimní semestr, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10. Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11. Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12. Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13. Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků
Cvičení
13 hod., povinná
Vyučující / Lektor
Osnova
Navazuje přímo na jednotlivé přednášky.
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny