Detail předmětu

Pokročilá matematika

FIT-IAMAk. rok: 2019/2020

Předmět navazuje na povinné matematické předměty bakalářského studia. Práce s matematickým aparátem je demonstrována spolu s prohloubením znalostí oblastí matematiky úzce souvisejících s informatikou a s ukázkou jejich aplikací v informatice. Jedná se zejména o teorii čísel a její aplikaci v kryptografii; základy teorie množin a logiky, vybrané logické systémy, techniky a rozhodovací procedury s aplikací např. v databázích či softwarovém inženýrství; teorii svazů, pevných bodů, a jejich aplikace ve verifikaci; pravděpodobnost a statistiku a aplikace v analýze pravděpodobnostních systémů a umělé inteligenci.

Výsledky učení předmětu

Schopnost matematické formulace, řešení problémů pomocí matematického aparátu, zejména dokazování, prohloubení a procvičení základních matematických pojmů, přehled o některých pro informatiku stěžejních oblastech matematiky a jejich aplikacích v informatice.
Rozvinutí schopnosti exaktně se vyjadřovat a používat matematický aparát.

Prerekvizity

Základní pojmy o relacích, množinách, základy výrokové a predikátové logiky, základy algebry, základy konečných automatů.

Doporučená nebo povinná literatura

R. Smullyan. First-Order Logic. Dover, 1995.
B. Balcar, P. Štěpánek. Teorie množin. Academia, 2005.
C. M. Grinstead, J. L. Snell. Introduction to probability. American Mathematical Soc., 2012.
G. Chartrand, A. D. Polimeni, P. Zhang. Mathematical Proofs: A Transition to Advanced Mathematics, 2013
J. Hromkovič. Algorithmic adventures: from knowledge to magic. Dordrecht: Springer, 2009.
Steven Roman. Lattices and Ordered Sets, Springer-Verlag New York, 2008.
A. Doxiadis, C. Papadimitriou. Logicomix: An Epic Search for Truth. Bloomsbury, 2009.
A.R. Bradley, Z. Manna. The Calculus of Computation. Springer, 2007.
D. P. Bertsekas, J. N. Tsitsiklis. Introduction to Probability, Athena, 2008. Scientific
M. Huth, M. Ryan. Logic in Computer Science. Modelling and Reasoning about Systems. Cambridge University Press, 2004.

Způsob a kritéria hodnocení

Dva testy - v polovině a v závěru semestru (25 bodů za test), aktivita na cvičeních (5 bodů za každé cvičení).
Podmínky zápočtu:
Získání 50 ze 100 možných bodů, udělovaných za aktivity v průběhu cvičení a docházku (50 bodů), průběžné testy (50 bodů).

Jazyk výuky

čeština, angličtina

Cíl

  • Prohloubit schopnosti aplikace matematického aparátu ve vyjadřování, formulaci a řešení problémů a posílit schopnosti exaktního vyjadřování a myšlení obecně,
  • rozvinout některé partie matematiky s těsnou vazbou na informatiku a ukázat souvislost s informatikou,
  • usnadnit studium matematických předmětů v navazujícím magisterském studiu,
  • přesvědčit se na vlastní oči, jak komplikovaná matematika může vést k velmi užitečným algoritmům a nástrojům.

Zařazení předmětu ve studijních plánech

  • Program BIT bakalářský, 2. ročník, letní semestr, 5 kreditů, volitelný

  • Program IT-BC-3 bakalářský

    obor BIT , 2. ročník, letní semestr, 5 kreditů, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Axiomy teorie množin, axiom výběru. Spočetné a nespočetné množiny, kardinální čísla. (Dana Hliněná)
  2. Aplikace teorie čísel v kryptografii. (Dana Hliněná)
  3. Teorie čísel: prvočísla, dělitelnost, kongruence, Fundamentální věta aritmetiky, Malá Fermatova věta, Eulerova funkce. (Dana Hliněná)
  4. Výroková logika. Syntaxe, sémantika. Důkazové metody pro výrokovou logiku: metoda sémantických tabulek, přirozená dedukce, rezoluce. (Ondřej Lengál)
  5. Predikátová logika. Syntaxe, sémantika prvořádové predikátové logiky. Důkazové metody pro predikátovou logiku: metoda sémantických tabulek, přirozená dedukce. (Ondřej Lengál)
  6. Predikátová logika. Craigova interpolace. Důležité teorie. Nerozhodnutelnost. Predikátová logika vyššího řádu. (Ondřej Lengál)
  7. Hoarova logika. Precondition, postcondition. Invariant. Deduktivní verifikace programů. (Ondřej Lengál)
  8. Logické rozhodovací procedury: Klasické rozhodovací procedury pro aritmetiku nad celými a racionálními čísly. (Lukáš Holík)
  9. Automatové rozhodovací procedury pro aritmetiku a WS1S. (Lukáš Holík)
  10. Rozhodovací procedury pro kombinované teorie. (Lukáš Holík)
  11. Pokročilá kombinatorika: Princip inkluze a exkluze, Dirichletův princip, vybrané kombinatorické teorémy. (Milan Češka)
  12. Podmíněná pravděpodobnost, základy statistické inference, Bayesovské sítě. (Milan Češka)
  13. Náhodné procesy: Markovův a Poissonův proces. Aplikace v informatice: kvantitativní analýza, analýza výkonnosti. (Milan Češka)

Cvičení odborného základu

18 hod., povinná

Vyučující / Lektor

Osnova

  1. Důkazy v teorii množin, Cantorova diagonalizace, párování, Hilbertův hotel.
  2. Prvočísla a kryptografie, RSA a DSA šifry.
  3. Důkazové úlohy v teorii čísel, Čínská věta o zbytcích.
  4. Důkazové metody pro výrokovou logiku.
  5. Důkazové metody pro predikátovou logiku.
  6. Rozhodovací procedury.
  7. Počítačové cvičení 1.
  8. Počítačové cvičení 2.
  9. Automatové rozhodovací procedury a kombinované teorie.
  10. Počítačové cvičení 3.
  11. Důkazové metody v kombinatorice.
  12. Podmíněná pravděpodobnost v praxi, použití statistické inference.
  13. Počítačové cvičení 4.

Cvičení na počítači

8 hod., povinná

Vyučující / Lektor

Osnova

  1. Důkazy korektnosti programů v systému VCC.
  2. Solvery - SAT, SMT.
  3. Solvery - Mona, Vampire.
  4. Analýza pravděpodobnostních systémů, nástroj PRISM.

eLearning