Detail předmětu

Matematika 1

FEKT-BMA1PovinnýBakalářský (první cyklus)Ak. rok: 2015/2016Zimní semestr1 ročník7  kreditů

Základní matematické pojmy. Funkce, inverzní funkce, posloupnosti. Vektorové prostory, základní pojmy, lineární kombinace vektorů,lineární závislost,nezávislost vektorů, báze, dimenze vektorového prostoru. Matice a determinanty. Soustavy lineárních rovnic a jejich řešení. Diferenciální počet funkcí jedné proměnné, limita, spojitost, derivace funkce. Derivace vyšších řádů, l´Hospitalovo pravidlo, průběh funkce. Integrální počet funkcí jedné proměnné, primitivní funkce, neurčitý integrál. Metody přímé integrace. Metoda per partes, substituční metoda, integrace některých elementárních funkcí. Určitý integrál a jeho aplikace. Nevlastní integrál. Nekonečné číselné řady, kritéria konvergence. Mocninné řady, Taylorova věta, Taylorova řada.

Zajišťuje ústav

Výsledky učení předmětu

Student by po absolvování předmětu měli být schopen:

- rozhodnout, zda vektory jsou lineárně nezávislé a zda tvoří bázi vektorového prostoru;
- sčítat a násobit matice, spočítat determinant čtvercové matice do řádu 4x4, spočítat hodnost matice a inverzní matici;
- vyřešit soustavu lineárních rovnic;
- určovat definiční obory a načrtnout grafy elementárních funkcí;
- spočítat limity a asymptoty funkce jedné proměnné, používat L’Hospitalovo pravidlo na výpočet limit;
- derivovat funkce, určit rovnici tečny ke grafu funkce, napsat Taylorův polynom funkce v daném bodě;
- načrtnout graf funkce včetně extrémů, inflexních bodů a asymptot;
- integrovat pomocí základních metod integrování, jako jsou substituce, rozklad na parciální zlomky a per partes;
- počítat určitý integrál, použít substituci i per partes pro výpočet určitého integrálu z funkce;
- spočítat obsah plochy pomocí určitého integrálu, počítat nevlastní integrál;
- rozhodnout o konvergenci číselné řady, určit obor konvergence mocninné řady.

Prerekvizity

Studenti by měli umět pracovat s výrazy a elementárními funkcemi v rozsahu standardních požadavků k maturitě z matematiky, zejména by měli být schopni upravovat a zjednodušovat výrazy, řešit základní rovnice a nerovnice a nalézt definiční obor a obor hodnot funkce.

Doporučená nebo povinná literatura

Krupková, V., Fuchs, P.,: Matematika 1 (CS)
Kolářová, E: Maple (CS)
Kolářová, E: Matematika 1 - Sbírka úloh (CS)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky, cvičení na počítači a ostatní aktivity.

Způsob a kritéria hodnocení

Maximum 30 bodů za semestr ( za 2 projekty a dva testy). Podmínkou udělení zápočtu je zisk alespoň 10 bodů ze cvičení z toho minimálně 5 bodů z testů (z max. 20 b.).

Zkouška je pouze písemná na maximum 70 bodů.

Jazyk výuky

čeština

Osnovy výuky

1. Množiny, funkce, inverzní funkce.
2. Vektory a matice.
3. Determinanty, soustavy rovnic.
4. Limita a spojitost funkce jedné proměnné.
5. Derivace funkce jedné proměnné.
6. Taylorův polynom, l'Hospitalovo pravidlo.
7. Průběh funkce.
8. Neurčitý integrál, per partes a substituční metoda.
9. Integrování racionální lomené funkce.
10. Určitý integrál.
11. Aplikace určitého integrálu a nevlastní integrál.
12. Číselné řady.
13. Mocninné řady a Taylorova řada.

Cíl

Předmět si klade za cíl seznámit posluchače se základními principy a metodami vyšší matematiky, bez kterých se při studiu elektrooborů nelze obejít. Důraz je kladen na zvládnutí praktického použití těchto metod k řešení konkrétních úloh, a to včetně využití moderního matematického software.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.