study programme

Electronics and Information Technologies (Double-Degree)

Faculty: FEECAbbreviation: DKAD-EITAcad. year: 2020/2021

Type of study programme: Doctoral

Study programme code: P0619D060001

Degree awarded: Ph.D.

Language of instruction: English

Accreditation: 8.10.2019 - 7.10.2029

Mode of study

Combined study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering 100

Study aims

The student is fostered to use the theoretical knowledge and experience gained through own research activities in an innovative manner. He/She is able to efficiently use the gathered knowledge for the design of own and prospective solutions within their further experimental development and applied research. The emphasis is put on gaining both theoretical and practical skill, ability of self-decisions, definition of research and development hypotheses to propose projects spanning from basic to applied research, ability to evaluation of the results and their dissemination as research papers and presentation in front of the research community.

Graduate profile

The doctor study program "Electronics and Information Technologies" aims to generate top research and development specialists, who have deep knowledge of principles and techniques used in communication and data wired and wireless networks and also in related areas and also in data/signal acquisition, processing and the back representation of user data on the level of application layer. The main parts of the studies are represented by areas dealing with information theory and communication techniques. The graduate has deep knowledge in communication and information technologies, data transfer and their security. The graduate is skilled in operation systems, computer languages and database systems, their usage and also design of suitable software and user applications. The graduate is able to propose new technology solution of communication tools and information systems for advanced transfer of information.

Profession characteristics

Graduates of theprogram "Electronics and Information Technologies" apply in particular in research, development and design teams, in the field of professional activity in production or business organizations, in the academic sphere and in other institutions involved in science, research, development and innovation, in all areas of the company where communication systems and information transfer through data networks are being applied and used.
Our graduates are particularly experienced in the analysis, design, creation or management of complex systems aimed for data transfer and processing, as well as in the programming, integration, support, maintenance or sale of these systems.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within mainly the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study the full-time students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The combined students submit the elaborated dissertation thesis by the end of winter term in the fifth year of study. The final dissertation thesis is expected to be submitted by the student by the end of the fourth or fifth year of the full-time or combined study form, respectively.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

  1. Analog circuits containing elements with the fractional order

    The thesis is focused on modeling, simulations and experimental verification of structures where relation between response and driving signal contains derivation or integration of non-integer order (so-called fractional structures or circuits). The task is also to design of suitable application possibilities of fractional order circuits, e.g. frequency filters, reconfigurable filters, tunable oscillators or other circuits. Attention should be kept also on other ways how to implement fractional order circuits, e.g. implementation of structures with distributed parameters (RC-EDP), on computer modelling of matter and structures from nature and biology and also on mathematical description.

    Tutor: Jeřábek Jan, doc. Ing., Ph.D.

  2. Converged networks with limited bandwidth

    Converged networks with limited bandwidth require a research of alternatives of increasing their throughput. It is about solving the problems connected with broadband data transmission, which is in its part limited by a narrower bandwidth, the so-called bottleneck problem. Come up with solution possibilities and subsequently design, model and implement a new system on the NetCOPE platform. Consider solutions based on QoS, solutions based on compression algorithms, and their combinations. Knowledge in the area of IP networks, modelling in Matlab and Simulink, and programming in languages VHDL or Verilog are supposed. You are supposed to compare your system with existing ones and to specify its advantages.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  3. Electronical phantoms describing fractional impedance behaviour of real-world systems

    This topic focuses on the synthesis and description of analogue circuits – phantoms that emulate and capture in time the electrical properties of systems/tissues being analyzes mainly using the impedance spectroscopy technique. The definition of these phantoms is based on using the fractional calculus, whereas for their realization mainly the passive fractional-order elements and their suitable combination and transformation, which represents an area not sufficiently investigated so far. The importance of such phantoms for the future research is the possibility of explicit comparison and suitability of measurement techniques used for material characterization.

    Tutor: Jeřábek Jan, doc. Ing., Ph.D.

  4. Electronically configurable analogue circuits

    This topic is focused on design of two-ports, filtering circuits especially and oscillators for instance, with possibility to externally and electronically change significant parameters of the circuit and in the case of filter also change of type of frequency response. Design with fractional-order element sis also expected. Available active elements are supposed to be used as it is or in modified variants. Simulations not only with simple models but also with transistor-level structures are expected. When verified by experimental measurement, behavioural modelling is preferred.

    Tutor: Jeřábek Jan, doc. Ing., Ph.D.

  5. Methods for measurement of basic and derived parameters of data networks

    Goal of this thesis is to research in area of measurement of basic parameters of data networks based mostly on Internet Protocol (IP), such as throughput, one-way delay and round-trip time, so as in area of derived parameters, such as quality of voice and video services. This comes with problematics of modelling of behaviour of network and user under various conditions, long-term and short-term events, a description of mass-serving systems and also features and behaviour key internet and measuring protocols in computer networks, so as topic of their possible setting and security. Based on analysis of available tools and their features, or development of own tools, design of solution and approaches for various types of measurements is expected. Designed methodology should be verified both in environment of lab and real-world networks.

    Tutor: Jeřábek Jan, doc. Ing., Ph.D.

  6. Methods for Optimization of Ultra-Wideband Analog Integrated Systems-on-Chip Using Parasitic Effects of Transistors

    The thesis is focused on design of optimization methods of MOS-only analog ultra-wideband analog integrated systems-on-chip of arbitrary integer and fractional order. The aim is research and development of low-voltage and low-power applications by advantageous usage of influences of transistor parasitics that work in frequency range units of GHz. Selected novel implementations of true time delay circuits, oscillators, second- or higher-order filters, emulators of synthetic inductors, etc. with potential applications in 5G communication systems will undergo on-chip fabrication and experimental verification. The research will be also conducted in cooperation with Prof. Khaled N. Salama from Sensors Lab, King Abdullah University of Science and Technology, KSA, with a paid internship option.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  7. Modern wireless communication technologies for industrial wearable applications

    The main objectives of this doctoral topic are: Identification of most critical performance metrics of emerging industrial wearable applications (e.g. augmented reality); Research and advanced theoretical / simulation-based analysis of novel wireless communication technologies fulfilling the observed KPIs; Design of universal communication architecture suitable for emerging industrial wearable applications; Development of analytical model of the selected wireless technology to analyse its performance in various industrial scenarios (indoor vs. outdoor, low vs. high-densified deployment, etc.); Development of proof-of-concept demonstrator implementing the “winning” wireless technology in the selected industrial wearable application.

    Tutor: Hošek Jiří, doc. Ing., Ph.D.

  8. Optimization of PI/PD/PID Controllers Using Fractional-Order Storage Elements

    The thesis deals with topics related to modeling and control of real processes using fractional calculus. The research will be focused on new approximation methods of storage elements of arbitrary fractional-order. The aim of the thesis is also to propose a number of original solutions of capacitor and inductor emulators of arbitrary fractional-order, especially for parameter optimization and implementation of proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controllers with potential for use in industry. Selected new circuit solutions for emulators of storage elements of arbitrary fractional-order and analog PID controllers will undergo on-chip fabrication. The quality of controllers will be evaluated in particular on the basis of robustness and stability in the Matlab/Simulink simulation environment or experimental measurements. The research will be also conducted in cooperation with Prof. Khaled N. Salama from Sensors Lab, King Abdullah University of Science and Technology, KSA, with a paid internship option.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  9. Parallelization of Evolutionary Algorithms

    The aim is research in the field of evolutionary algorithms parallelization. Parallelization is an integral part of an endeavour to increase effectiveness of evolutionary algorithms and their possible use. Research should build on current knowledge and carry out research on the impact of selected parameters and design details on the performance. Research should be concentrated on the island models of evolutionary algorithms. According to the chosen method the knowledge of some programming language is required, as well as scripting languages Python or Matlab. Selected development and testing environment is left on free choice. The result should be presented and results verified.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  10. Radio signal propagation in mmWave band

    The main goals of this doctoral topic are following: Deeply and cross-disciplinarily understand the networking constraints and trust challenges of emerging communications in mmWave bands; Study mmWave interference in different scenarios; Develop a mmWave propagation model considering 3D space and other specifics of radio channel at ultra-high frequencies; Verify the developer model trough the simulations and/or experimental measurements.

    Tutor: Hošek Jiří, doc. Ing., Ph.D.

  11. Radio signal propagation in mmWave band

    The main goals of this doctoral topic are following: Deeply and cross-disciplinarily understand the networking constraints and trust challenges of emerging communications in mmWave bands; Study mmWave interference in different scenarios; Develop a mmWave propagation model considering 3D space and other specifics of radio channel at ultra-high frequencies; Verify the developer model trough the simulations and/or experimental measurements.

    Tutor: Hošek Jiří, doc. Ing., Ph.D.

  12. Research of Analog Active Function Blocks for Biosensors

    The dissertation is focused on research of novel structures of non-conventional analog active function blocks such as current or voltage conveyors using chemical description of their terminal variables. The aim of the research is to develop novel structures of chemical conveyors of different generations and their utilization in measurement systems for sensing basic quantities in biomedical systems. Selected systems will undergo on-chip fabrication and experimental verification. The research will be also conducted in cooperation with Prof. Khaled N. Salama from Sensors Lab, King Abdullah University of Science and Technology, KSA, with a paid internship option.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  13. Research of Fractional-Order Element Emulators for Reliable Modeling of Real-World Systems

    The thesis is focused on research of analog emulators of fractional-order elements (FOEs) with an order of (-1; +1). The aim is the development of reliable low-voltage and low-power MOS transistor-based emulators of capacitors and inductors by advantageous usage of influences of transistor parasitics. Selected novel implementations of FOEs will be used for modeling of different varieties and types of agricultural products and biomedical tissues (fruit/vegetable aging, ear channel/lung/liver modeling of humans and animals, etc.) based on real measured data collected via electrical impedance spectroscopy measurement technique. The research will be also conducted in cooperation with Prof. Khaled N. Salama from Sensors Lab, King Abdullah University of Science and Technology, KSA, with a paid internship option.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  14. Research on optimization of communication parameters of flying base-stations in 5G infrastructure

    The aim of the thesis is to conduct research on the mechanisms of flying base stations as part of the emerging 5th generation (5G) of wireless networks. Autonomous flying platforms (drones) are considered to be a very promising way to increase the capacity of modern mobile networks, but at the same time present a number of technical challenges. The task of the student will be to carry out a detailed overview of existing commercial and non-commercial solutions and to focus mainly on optimizing the communication parameters of flying base stations. Partial issues will also be the management of secure communication between elements of the fleet of flying UAVs.

    Tutor: Hošek Jiří, doc. Ing., Ph.D.

  15. Security in Converged Networks

    The aim is to analyse the up-to-date development and trends in the area of converged networks, mainly the problems of protection against cybernetic attacks. The areas of 5G mobile, SDN (Software Defined Networks) and related transmission technologies are seemed to be among the advanced possibilities. Design of innovative or new protection methods is supposed to be based on the obtained observation. The research requires orientation in networks area, experience with MATALB or SCILAB programs, and knowledge of at least one of VHDL, C or Java languages, evolutionary algorithms, and possibly use of the system FPGA.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  16. Video based action recognition

    Currently, there are a number of reliable algorithms for classifying the content of images. These algorithms are mainly based on convolutional neural networks. The trend in image processing and analysis is to adapt these algorithms to be able to analyze the dynamic component of an image signal. The topic of the thesis will be focused on the research of the possibilities of using convolutional neural networks for the purpose of classification of actions / activities in video recordings.

    Tutor: Přinosil Jiří, Ing., Ph.D.

1. round (applications submitted from 01.04.2020 to 15.05.2020)

  1. Design of Smart Communication Network – Smart Grid

    The aim is to create a design of an optimized smart communication network (Smart Grid) connected with Internet of Things (IoT), focusing on smart cities eventually houses. Use of modern sensors and other elements. Transmission and reliability optimization M2M (Machine-To-Machine) and advanced communication infrastructure design. Making wireless communication protocols more effective. Developing ideas of Industry 4.0. Mobile networks are planned for 5G and LTE, PLC, Ethernet, NB-IoT, SigFox, LoRaWAN. Use of the simulation tool Network Simulator 3 (NS3) and similar environments is supposed.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  2. Security of Software Defined Networks

    The aim is to analyse security aspects of the Software Defined Networks (SDN) technology. Optimization of existing and design of new algorithms against vulnerability of SDN will be proposed. New strategies are needed to secure the operation of the control plane, ensuring the controller is a priority. The attack vectors for SDN systems and share routes to secure the virtual network infrastructure that supports SDN and then the methods that are currently being considered in network protection play an important role. Due to the separation of the control plane from the data plane, there are several parts that must be protected from attackers. In addition to attacks on the controller, there are attacks on links, data plane devices, and applications. The application sphere of the research will be Blockchain-Based Distributed Trading in Energy Internet, smart grids, microgrids, solar energy systems and other current technologies. Selection and subsequent use of suitable simulation tools and other means is expected.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hod. rozsahGr.Op.
DKA-NWNNext-generation of Wireless Networksen4CompulsoryDrExS - 39yes
DKA-RE1Modern Electronic Circuit Designen4Compulsory-optionalDrExS - 39yes
DKA-ME1Modern Microelectronic Systemsen4Compulsory-optionalDrExS - 39yes
DKA-TK1Optimization Methods and Queuing Theoryen4Compulsory-optionalDrExS - 39yes
DKA-MA1Statistics, Stochastic Processes, Operations Researchen4Compulsory-optionalDrExS - 39yes
DKA-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
DKA-EIZScientific Publishing A to Zen2ElectiveDrExS - 26yes
DKA-RIZSolving of Innovative Tasksen2ElectiveDrExS - 39yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hod. rozsahGr.Op.
DKA-IMLInformation Representation and Machine Learningen4CompulsoryDrExS - 39yes
DKA-TK2Applied Cryptographyen4Compulsory-optionalDrExS - 39yes
DKA-MA2Discrete Processes in Electrical Engineeringen4Compulsory-optionalDrExS - 39yes
DKA-RE2Modern Digital Wireless Communicationen4Compulsory-optionalDrExS - 39yes
DKA-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
DKA-CVPQuotations in a Research Worken2ElectiveDrExP - 26yes
DKA-RIZSolving of Innovative Tasksen2ElectiveDrExS - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hod. rozsahGr.Op.
DKA-QJAEnglish for The State Doctoral Examen4CompulsoryDrExS - 3yes