Detail oboru

Power Electrical and Electronic Engineering

Original title in Czech: Silnoproudá elektrotechnika a elektroenergetikaFEKTAbbreviation: PK-SEEAcad. year: 2017/2018Specialisation: -

Programme: Electrical Engineering and Communication

Length of Study: 4 years

Accredited from: 25.7.2007Accredited until: 20.12.2020

Profil oboru

The goal of the postgradual doctoral (PhD) study is the education for scientific work in the area of power electrical engineering and power systems. Graduates of PhD find occupation either as scientific or research workers including industrial development, either as universty teachers and in higher manager functions as well

Key learning outcomes

PhD-graduate obtains high theoretical knowledge and will learn to solve complicated scientific and technological problems by oneself PhD-graduate is ready for further professional rise with a high degree of adaptivity Graduates of PhD find occupation either as scientific or research workers including industrial development, either as universty teachers and in higher manager functions as well

Occupational profiles of graduates with examples

The graduate obtains broad knowledge of subject of high power engineering. The knowledge is build mainly on theoretical background of the subject. Moreover the graduate will obtain deep special knowledge aimed in direction of his/her thesis. The graduate will be able to perform scientific and/or applied research based on up to date theoretical knowledge. The graduate will be able to organize and lead a team of researchers in the studied subject.

Supervisor oboru

Issued topics of Doctoral Study Program

  1. MEASUREMENT OF PHYSICAL QUANTITIES FOR THE ROTATING PARTS

    The theme is focused on the measurement of very small distances and deformation of rotating electrical parts. machines that have a significant effect on the operating characteristics of machines and equipment. The measurement is made modern measuring, recording and evaluation techniques. The aim is to assess and optimize the partial impacts of physical quantities on the characteristics and parameters of electromechanical systems. The work consists of theoretical, experimental and practical part. The issue is UVEE continuously addressed in the grant project, forthcoming international cooperation. Results are regularly published.

    Tutor: Veselka František, doc. Ing., CSc.

  2. STUDY OF DYNAMIC PROPERTIES SLIDING CONTACT

    The theme includes issues of sliding contact in high-end applications of electromechanical systems operating in dynamic operating conditions (Starting, regulation, etc.) with high ratings of current, voltage, speed, power, speed, and defined the parameters of the surrounding environment. Since the development of electromechanical systems in particular is currently associated with a requirement for high reliability and durability as defined, should be to extend the life of work sliding contact, reducing degradation of the stationary and moving parts of the sliding contact, eliminating the influence of the surroundings on the current flow between the stationary and moving part of the sliding contact. Partial information will be obtained during the analysis and field current.

    Tutor: Veselka František, doc. Ing., CSc.


Course structure diagram with ECTS credits

1. year of study, winter semester
CodeTitleL.Cr.Sem.Com.Compl.Gr.Op.
DET1Electrotechnical materials, material systems and production processescs4winterOptional specializedDrExyes
DEE1Mathematical Modelling of Electrical Power Systemscs4winterOptional specializedDrExyes
DME1Microelectronic Systemscs4winterOptional specializedDrExyes
DTK1Modern network technologiescs4winterOptional specializedDrExyes
DRE1Modern electronic circuit designcs4winterOptional specializedDrExyes
DFY1Junctions and nanostructurescs4winterOptional specializedDrExyes
DTE1Special Measurement Methodscs4winterOptional specializedDrExyes
DMA1Statistics, Stochastic Processes, Operations Researchcs4winterOptional specializedDrExyes
DAM1Selected chaps from automatic controlcs4winterOptional specializedDrExyes
DVE1Selected problems from power electronics and electrical drivescs4winterOptional specializedDrExyes
DBM1Advanced methods of processing and analysis of imagescs4winterOptional specializedDrExyes
DJA6English for post-graduatescs4winterGeneral knowledgeDrExyes
DRIZSolving of innovative taskscs2winterGeneral knowledgeDrExyes
DEIZScientific publishing A to Zcs2winterGeneral knowledgeDrExyes
1. year of study, summer semester
CodeTitleL.Cr.Sem.Com.Compl.Gr.Op.
DTK2Applied cryptographycs4summerOptional specializedDrExyes
DMA2Discrete Processes in Electrical Engineeringcs4summerOptional specializedDrExyes
DME2Microelectronic technologiescs4summerOptional specializedDrExyes
DRE2Modern digital wireless communicationcs4summerOptional specializedDrExyes
DTE2Numerical Computations with Partial Differential Equationscs4summerOptional specializedDrExyes
DFY2Spectroscopic methods for non-destructive diagnostics cs4summerOptional specializedDrExyes
DET2Selected diagnostic methods, reliability and qualitycs4summerOptional specializedDrExyes
DAM2Selected chaps from measuring techniquescs4summerOptional specializedDrExyes
DBM2Selected problems of biomedical engineeringcs4summerOptional specializedDrExyes
DEE2Selected problems of electricity productioncs4summerOptional specializedDrExyes
DVE2Topical Issues of Electrical Machines and Apparatuscs4summerOptional specializedDrExyes
DJA6English for post-graduatescs4summerGeneral knowledgeDrExyes
DCVPQuotations in a research workcs2summerGeneral knowledgeDrExyes
DRIZSolving of innovative taskscs2summerGeneral knowledgeDrExyes
1. year of study, both semester
CodeTitleL.Cr.Sem.Com.Compl.Gr.Op.
DQJAEnglish for the state doctoral examcs4bothCompulsoryDrExyes