Course detail

Watermanagement Concrete Structures

FAST-BL004Acad. year: 2018/2019

Types of concrete structures of water-service buildings. Monolithic framed structures. Supporting framed structures of storage tanks for liquids and water towers. Foundation structures – footings, continuous footings, grid and mat foundations, deep foundations.
Two-ways slabs – edge and locally supported (flat-slab floor, lifted slabs). Two-way ribbed and cassette plates. Circular plates. Simple and continuous wall beams. Walls with/without stiffening elements. Retaining walls.
Storage structures (bunkers and silos). Storage tanks for liquids, water towers, channels and ducts. Shells, domes and arches.
Application of precast structures. Basic theory of prestressed concrete. Principles of masonry structure design.

Department

Institute of Concrete and Masonry Structures (BZK)

Learning outcomes of the course unit

Student will learn the problems of the course and will get under control the course aims, within the meaning of obtaining knowledge and skills in the field of special topics of design and realization of concrete structures, concretized in the course schedule (foundations, tanks, containers, pipelines).

Prerequisites

structural mechanics, theory of elasticity, load, design of concrete structures

Co-requisites

Not required co-requisites.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Education runs in the forms of lectures and trainings. Character of the lectures is based on definition of basic principles, problems and methodology. In the trainings the main subject matters are trained on individually defined projects (examples).

Assesment methods and criteria linked to learning outcomes

To gain the credit, the students should elaborate individually defined design and calculate specified task. The students are obliged to consult the design continuously in the given terms and submit it to the fixed date. The presences in training lessons are checked. An exam consists both of the written part, in which the task is elaborated, and the theoretical part. To pass the exam successfully, both parts should be accomplished.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1.-2. Types of concrete structures of water-service buildings. Monolithic frame structures, supporting frame structures of tanks and water reservoirs (outline, calculation, nodes, redistribution, strain).
3.-4. Foundation structures – footings, continuous footings, grids, slabs, deep foundations.
5. Two-way slabs – edge supported.
6. Two-way slabs locally supported (flat-slabs, slabs with enlarged column head). Circular plates.
7. Simple and continuous wall beams. Walls with/without stiffening elements. Retaining walls.
8. Principles of design and reinforcing of storage structures (bunkers and silos). Rectangular and rotary symmetric tanks and water reservoirs.
9. Problems of water-service structures cracking.
10. Water-service structures – troughs, weirs.
11. Water-service structures – channels and ducts.
12. Design and application of shells, domes and arches.
13. Principles of design and application of precast structures. Basic theory of prestressed concrete. Principles of masonry structures design.

Aims

To provide students with basic knowledge about concrete structures and constructions design from viewpoint of the static.
To gain ability for design of the principal types of structures of building construction and civil engineering together with preparing relevant technical drawings.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme B-P-E-SI (N) Bachelor's

    branch V , 4. year of study, winter semester, 4 credits, compulsory

  • Programme B-P-C-SI (N) Bachelor's

    branch V , 4. year of study, winter semester, 4 credits, compulsory

  • Programme B-K-C-SI (N) Bachelor's

    branch V , 4. year of study, winter semester, 4 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1.-2. Types of concrete structures of water-service buildings. Monolithic frame structures, supporting frame structures of tanks and water reservoirs (outline, calculation, nodes, redistribution, strain).
3.-4. Foundation structures – footings, continuous footings, grids, slabs, deep foundations.
5. Two-way slabs – edge supported.
6. Two-way slabs locally supported (flat-slabs, slabs with enlarged column head). Circular plates.
7. Simple and continuous wall beams. Walls with/without stiffening elements. Retaining walls.
8. Principles of design and reinforcing of storage structures (bunkers and silos). Rectangular and rotary symmetric tanks and water reservoirs.
9. Problems of water-service structures cracking.
10. Water-service structures – troughs, weirs.
11. Water-service structures – channels and ducts.
12. Design and application of shells, domes and arches.
13. Principles of design and application of precast structures. Basic theory of prestressed concrete. Principles of masonry structures design.

Exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Reinforced concrete frame structure (Hall) - task, load calculation, load cases, static system, static calculation of frame.
2. Reinforced concrete frame structure (Hall) - load cases, wind, snow, internal forces, combination of load.
3. Reinforced concrete frame structure (Hall) – design of column, drawing of reinforced column.
4. Reinforced concrete frame structure (Hall) – design of footing, ultimate limit states of bending moment and punching, drawing of footing.
5. Continuous two-way slab – task, load, load cases.
6. Continuous two-way slab - calculation of internal forces, ultimate limit states.
7. Drawing of slab reinforcement
8. Reinforced channel – design, calculation of internal forces – wall, serviceability limit states.
9. Reinforced channel – calculation of internal forces – foundation slab.
10. Reinforced channel – design of reinforcement.
11. Square tank, design of reinforcement of wall.
12. Final correction.
13. Design submission. Credit.