Course detail

Applied physics

FAST-DB62Acad. year: 2018/2019

Selected problems from heat conduction. Hydrodynamic a thermokinetic similarity. Heat transfer from a moving heat-carrying medium. Selected problems from heat radiation. Combined transfer of heat.

Department

Institute of Physics (FYZ)

Learning outcomes of the course unit

Not applicable.

Prerequisites

Basic knowledge from physical and mathematical courses of bachelor and master studies.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1.Overview of basic notions of heat conduction.
2.Steady state heat conduction through a sandwich cylinder structure.
3.Heat transfer through heterogeneous interphases.
4.Estimation of surface coefficients of heat transfer using the
principle of physical similarity.
5.Overview of basic notions of heat convection.
6.Hydrodynamic and thermokinetic similarity.
7.Heat transfer from a moving heat-carrying medium.
8.Overview of basic notions of heat radiation.
9.Kirchhoff laws of radiating field.
10.Radiation of absolute black bodies and gray bodies.
11.Heat exchange between two planes.
12.Radiation within closed air cavities inside building structures.
13.Combined heat transfer.

Aims

Mastering advanced knowledge from building thermodynamics. Accent is put on the current research results. Illustrations will have the form of excerpts from journal papers which enables students to acquire basic formal skills necessary for presentation of research results in scientific journals.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme D-P-C-SI (N) Doctoral

    branch VHS , 1. year of study, summer semester, 8 credits, compulsory-optional

  • Programme D-P-E-SI (N) Doctoral

    branch VHS , 1. year of study, summer semester, 8 credits, compulsory-optional

  • Programme D-K-E-SI (N) Doctoral

    branch VHS , 1. year of study, summer semester, 8 credits, compulsory-optional

  • Programme D-K-C-SI (N) Doctoral

    branch VHS , 1. year of study, summer semester, 8 credits, compulsory-optional

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1.Overview of basic notions of heat conduction.
2.Steady state heat conduction through a sandwich cylinder structure.
3.Heat transfer through heterogeneous interphases.
4.Estimation of surface coefficients of heat transfer using the
principle of physical similarity.
5.Overview of basic notions of heat convection.
6.Hydrodynamic and thermokinetic similarity.
7.Heat transfer from a moving heat-carrying medium.
8.Overview of basic notions of heat radiation.
9.Kirchhoff laws of radiating field.
10.Radiation of absolute black bodies and gray bodies.
11.Heat exchange between two planes.
12.Radiation within closed air cavities inside building structures.
13.Combined heat transfer.