Detail publikace

Nový kvantifikátor pro chaotické dynamické systémy s rozsahlými stavovými atraktory

GÖTTHANS, T. PETRŽELA, J.

Originální název

Novel quantification for chaotic dynamical systems with large state attractors

Český název

Nový kvantifikátor pro chaotické dynamické systémy s rozsahlými stavovými atraktory

Anglický název

Novel quantification for chaotic dynamical systems with large state attractors

Typ

článek ve sborníku

Jazyk

en

Originální abstrakt

In this paper a novel quantification method for large state space attractors is proposed. The suggested approach is briefly described and tested on several dynamical systems with three degrees of freedom. Generalization of the method is for higher dimensional deterministic dynamical systems is also presented. The preliminary results shows that the method can be used for rough recognition of attractor nature and geometry. The significant contribution of proposed approach lies in speed-up the calculation process due to the reduction of one manifold.

Český abstrakt

V následujícím textu jsou uvedeny základní myšlenky týkající se nelineárních dynamických systémů, speciálně je představen nový kvantifikátor vhodný pro n-rozměrné systémy s velkým stavovým atraktorem. Daná metoda je též rychlejší než standardní vhodné metody. Metodu lze využít pro výpočty z časových sekvencí, je však nutné znát průběhy všech stavových proměnných.

Anglický abstrakt

In this paper a novel quantification method for large state space attractors is proposed. The suggested approach is briefly described and tested on several dynamical systems with three degrees of freedom. Generalization of the method is for higher dimensional deterministic dynamical systems is also presented. The preliminary results shows that the method can be used for rough recognition of attractor nature and geometry. The significant contribution of proposed approach lies in speed-up the calculation process due to the reduction of one manifold.

Klíčová slova

Neuronový model, Hindmarsh-Rosův model, differenciální rovnice, membránový potenciál, časová oblast, rovinné projekce

Rok RIV

2011

Vydáno

16.11.2011

Místo

Angers

ISBN

978-1-61804-051-0

Kniha

Proceedings of 13th International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering (MMACTEE '11) (id 19607)

Strany od

99

Strany do

103

Strany počet

5

BibTex


@inproceedings{BUT74738,
  author="Tomáš {Götthans} and Jiří {Petržela}",
  title="Novel quantification for chaotic dynamical systems with large state attractors",
  annote="In this paper a novel quantification method for large state space attractors is proposed. The suggested approach is briefly described and tested on several dynamical systems with three degrees of freedom. Generalization
of the method is for higher dimensional deterministic dynamical systems is also presented. The preliminary results shows that the method can be used for rough recognition of attractor nature and geometry. The significant
contribution of proposed approach lies in speed-up the calculation process due to the reduction of one manifold.",
  booktitle="Proceedings of 13th International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering (MMACTEE '11) (id 19607)",
  chapter="74738",
  howpublished="print",
  year="2011",
  month="november",
  pages="99--103",
  type="conference paper"
}