Detail publikace

Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications

HRDÝ, R. KYNCLOVÁ, H. KLEPÁČOVÁ, I. BARTOŠÍK, M. NEUŽIL, P.

Originální název

Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications

Anglický název

Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications

Jazyk

en

Originální abstrakt

We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide–ferrocyanide redox couple (Fe2+/Fe3+) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.

Anglický abstrakt

We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide–ferrocyanide redox couple (Fe2+/Fe3+) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.

Dokumenty

BibTex


@article{BUT143063,
  author="Radim {Hrdý} and Hana {Kynclová} and Ivana {Klepáčová} and Martin {Bartošík} and Pavel {Neužil}",
  title="Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications",
  annote="We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide–ferrocyanide redox couple (Fe2+/Fe3+) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.",
  address="American Chemical Society, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA",
  chapter="143063",
  doi="10.1021/acs.analchem.7b00776",
  howpublished="online",
  institution="American Chemical Society, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA",
  number="17",
  volume="86",
  year="2017",
  month="september",
  pages="8731--8737",
  publisher="American Chemical Society, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA",
  type="journal article in Web of Science"
}