Detail publikace

Chaotický systém se zaobleným čtvercovým ekvilibriem a bez ekvilibria

VIET-THANH, P. SAJAD, J. VOLOS, C. GÖTTHANS, T. WANG, X. VO HOANG, D.

Originální název

A chaotic system with rounded square equilibrium and with no-equilibrium

Český název

Chaotický systém se zaobleným čtvercovým ekvilibriem a bez ekvilibria

Anglický název

A chaotic system with rounded square equilibrium and with no-equilibrium

Typ

článek v časopise

Jazyk

en

Originální abstrakt

Chaotic systems with an infinite number of equilibrium points and chaotic ones without equilibrium have received a significant attention in the last years because they belong to a class of systems with “hidden attractor”. In this work, we introduce a three-dimensional chaotic system displaying both hidden attractors with infinite equilibria and hidden attractors without equilibrium. Surprisingly, when the system exhibits hidden attractors with infinite equilibria, it has a rounded square curve of equilibrium points. Dynamical properties of the new system are analyzed through equilibrium points, phase portraits, bifurcation diagram, and maximal Lyapunov exponents. Furthermore, circuit implementation of the system is presented showing another approach to study such system as well as its feasibility.

Český abstrakt

V této práci jsme představili trojrozměrný chaotický systém se zaobleným čtvercovým ekvilibriem a bez ekvilibria. Dynamické vlastnosti nového systému jsou analyzovány pomocí standartních metod. Kromě toho je prezentována obvodová implementace systému.

Anglický abstrakt

Chaotic systems with an infinite number of equilibrium points and chaotic ones without equilibrium have received a significant attention in the last years because they belong to a class of systems with “hidden attractor”. In this work, we introduce a three-dimensional chaotic system displaying both hidden attractors with infinite equilibria and hidden attractors without equilibrium. Surprisingly, when the system exhibits hidden attractors with infinite equilibria, it has a rounded square curve of equilibrium points. Dynamical properties of the new system are analyzed through equilibrium points, phase portraits, bifurcation diagram, and maximal Lyapunov exponents. Furthermore, circuit implementation of the system is presented showing another approach to study such system as well as its feasibility.

Klíčová slova

Chaos; Skryté atraktory; Ekvilibria; Elektronické obvody

Vydáno

03.11.2016

Nakladatel

Elsevier GmbH

Strany od

1

Strany do

7

Strany počet

7

BibTex


@article{BUT129430,
  author="Viet-Thanh {Pham} and Jafari {Sajad} and Christos {Volos} and Tomáš {Götthans} and Xiong {Wang} and Duy {Vo Hoang}",
  title="A chaotic system with rounded square equilibrium and with no-equilibrium",
  annote="Chaotic systems with an infinite number of equilibrium points and chaotic ones without equilibrium have received a significant attention in the last years because they belong to a class of systems with “hidden attractor”. In this work, we introduce a three-dimensional chaotic system displaying both hidden attractors with infinite equilibria and hidden attractors without equilibrium. Surprisingly, when the system exhibits hidden attractors with infinite equilibria, it has a rounded square curve of equilibrium points. Dynamical properties of the new system are analyzed through equilibrium points, phase portraits, bifurcation diagram, and maximal Lyapunov exponents. Furthermore, circuit implementation of the system is presented showing another approach to study such system as well as its feasibility.",
  address="Elsevier GmbH",
  chapter="129430",
  doi="10.1016/j.ijleo.2016.10.100",
  howpublished="online",
  institution="Elsevier GmbH",
  number="4",
  volume="127",
  year="2016",
  month="november",
  pages="1--7",
  publisher="Elsevier GmbH",
  type="journal article"
}