Detail publikace

Optimization of welding parameters of Ti6Al4V alloy using electron beam

Originální název

Optimization of welding parameters of Ti6Al4V alloy using electron beam

Anglický název

Optimization of welding parameters of Ti6Al4V alloy using electron beam

Jazyk

en

Originální abstrakt

Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O) make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

Anglický abstrakt

Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O) make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

BibTex


@article{BUT126035,
  author="Petr {Havlík} and Ivo {Dlouhý}",
  title="Optimization of welding parameters of Ti6Al4V alloy using electron beam",
  annote="Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O) make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.",
  address="University of Žilina",
  chapter="126035",
  howpublished="online",
  institution="University of Žilina",
  number="1",
  volume="23",
  year="2016",
  month="june",
  pages="11--19",
  publisher="University of Žilina",
  type="journal article - other"
}