Detail předmětu

Matematika 4

FAST-BAA004Ak. rok: 2020/2021

Diskrétní a spojitá náhodná veličina a vektor, rozdělovací funkce, pravděpodobnost, distribuční funkce, transformace náhodných veličin, nezávislost náhodných veličin, číselné charakteristiky náhodných veličin a vektorů, speciální zákony rozdělení.
Náhodný výběr, bodový odhad neznámého parametru rozložení a jeho vlastnosti, intervalový odhad parametru rozložení, testování statistických hypotéz, testy o parametrech rozdělení, testy dobré shody, základy regresní analýzy.

Zajišťuje ústav

Ústav matematiky a deskriptivní geometrie (MAT)

Výsledky učení předmětu

Student zvládne řešení jednoduchých praktických pravděpodobnostních problémů a používání základních statistických metod z oblasti itervalových odhadů parametrů, testování parametrických i neparametrických statistických hypotéz a lineárních modelů.

Prerekvizity

Znalost elementárních pojmů teorie funkcí jedné a více reálných proměnných (derivace, parciální derivace, limita a spojitost, grafy funkcí). Schopnost řešit určité integrály, dvojné a trojné integrály a znalost jejich základních aplikací.

Jazyk výuky

čeština

Osnovy výuky

1. Diskrétní a spojitá náhodná veličina (náhodný vektor), rozdělovací funkce. Pravděpodobnost.
2. Vlastnosti pravděpodobnosti. Distribuční funkce. Vlastnosti distribuční funkce.
3. Vztahy mezi rozdělovací a distribuční funkcí náhodné veličiny. Marginální náhodný vektor.
4. Nezávislé náhodné veličiny. Číselné charakteristiky náhodných veličin: střední hodnota, rozptyl, směrodatná odchylka, variační koeficient, modus, kvantily. Pravidla pro výpočet střední hodnoty a rozptylu.
5. Číselné charakteristiky náhodných vektorů: kovariance, korelační koeficient, kovarianční a korelační matice.
6. Některé zákony diskrétního rozdělení – klasické, alternativní, binomické, Poissonovo – definice, použití.
7. Některé zákony spojitého rozdělení – rovnoměrné, exponenciální, normální i vícerozměrné - definice, použití.
8. Chí- kvadrát rozdělení, Studentovo rozdělení – vznik, použití. Náhodný výběr. Výběrové statistiky.
9. Rozdělení výběrových statistik. Bodový odhad parametrů rozdělení. Požadované vlastnosti odhadu.
10. Intervalový odhad parametrů rozdělení.
11. Testování statistických hypotéz - podstata. Testy o parametrech normálního rozdělení.
12. Testy dobré shody. Chí – kvadrát test. Základní pojmy regresní analýzy.
13. Lineární model.

Cíl

Získat přehled o základních vlastnostech pravděpodobnosti a umět řešit jednoduché praktické pravděpodobnostní problémy. Seznámit se se základními statistickými metodami pro itervalové odhady parametrů, testování parametrických i neparametrických statistických hypotéz a lineární model.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program BPC-MI bakalářský, 2. ročník, zimní semestr, 5 kreditů, povinný
  • Program BPA-SI bakalářský, 3. ročník, zimní semestr, 5 kreditů, povinný
  • Program BPC-EVB bakalářský, 3. ročník, zimní semestr, 5 kreditů, povinný
  • Program BKC-SI bakalářský, 3. ročník, zimní semestr, 5 kreditů, povinný

  • Program BPC-SI bakalářský

    specializace K , 3. ročník, zimní semestr, 5 kreditů, povinný
    specializace E , 3. ročník, zimní semestr, 5 kreditů, povinný
    specializace S , 3. ročník, zimní semestr, 5 kreditů, povinný
    specializace M , 3. ročník, zimní semestr, 5 kreditů, povinný
    specializace V , 3. ročník, zimní semestr, 5 kreditů, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení

26 hod., povinná

Vyučující / Lektor

eLearning