Detail předmětu

Aplikovaná mechanika

FSI-WAMAk. rok: 2019/2020

Základní pojmy mechaniky kontinua, napjatost a deformace. Matematická formulace úlohy pružnosti pomocí diferenciálního přístupu. Diferenciální rovnice rovnováhy, rovnice geometrické, Hookeův zákon. Okrajové podmínky.Variační formulace, princip virtuálních prací. Deformační varianta metody konečných prvků (MKP). Základy lineární lomové mechaniky.
Asociovaná teorie plastického tečení se smíšeným zpevněním. Kinematický a isotropický model zpevnění. Mechanika kompozitů, homogenizace, základy mikromechaniky kompozitů. Tuhost a pevnost dlouhovláknových kompositů v podélném a příčném směru. Tuhost a pevnost krátkovláknových kompozitů v podélném a příčném směru.
Hookeův zákon anizotropického materiálu, ortotropického materiálu a transversálně ortotropického materiálu v hlavních směrech ortotropie.
Směrová matice tuhosti. Podmínky pevnosti. Mechanismy zhouževnatění kompozitů s křehkou matricí.

Výsledky učení předmětu

Studenti získají poznatky o základních metodách stanovení napjatosti
a deformace u obecných těles, vycházejících z diferenciálního a
variačního přístupu. Přínosem je i praktická zkušenost s použitím
metody konečných prvků (systém ANSYS) při řešení napjatosti a deformace
jednoduché konstrukce. Důležité jsou rovněž poznatky o negativním
vlivu trhlin na životnost a základní poznatky o mechanickém chování kompozitních materiálů.

Prerekvizity

Znalost základních pojmů pružnosti a pevnosti (napětí, deformace, obecný Hookeův zákon), základy lineární pružnosti a pevnosti prutů a skořepin. Základy teorie mezních stavů (podmínky plasticity a křehké pevnosti).

Doporučená nebo povinná literatura

Hill,R.: The mathematical theory of plasticity. Oxford U. P., Oxford, 1950
Ondráček,E.,Vrbka,J.,Janíček,P.,Burša,J.: Mechanika těles - pružnost a pevnost II. Akademické nakladatelství CERM, Brno, 2006
Agarwal,B.D., Broutman,L.J.: Vláknové kompozity, SNTL, Praha,1987
Chawla, K.K.: Composite materials. Science and engineering. Springer-Verlag, New York, Berlin, Heidelberg, 1998
Gross, D., Seeling T.: Fracture mechanics. Springer-Verlag, Berlin, Heidelberg, 2006

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Zápočet se uděluje na základě úspěšného obhájení zápočtového projektu, majícího charakter praktického výpočtu napjatosti a deformace u jednoduché konstrukce nebo kompozitní struktury pomocí klasických přístupů a pomocí metody konečných prvků, využitím programového systému ANSYS a následného kritického zhodnocení dosažených výsledků.
Zkouška je kombinovaná a obsahuje písemnou část, sestávající z průřezového
písemného testu a následného ústního pohovoru.

Jazyk výuky

čeština

Cíl

Získat poznatky o metodách a přístupech stanovení najatosti a deformace u obecných těles z lineárně pružného materiálu a materiálu pružně
plastického. Seznámit se s vlivem trhlin na napjatost a deformaci a
s možnostmi určování zbytkové životnosti. V kapitole týkající se
kompozitních materiálů se studenti seznamí s metodami stanovení
mechanických charakteristik složeného materiálu na základě známých
mechanických vlastností jednotlivých složek a geometrické struktury.
Dále jde o to pochopit anisotropické, resp. ortotropické chování
kompozitů na úrovni modelu mechanického kontinua jako důsledek
směrové struktury materiálu.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na cvičení je povinná. Omluvená neúčast se nahrazuje samostatným vypracováním úloh podle pokynů vyučujícího.

Zařazení předmětu ve studijních plánech

  • Program M2A-P magisterský navazující

    obor M-MTI , 1. ročník, zimní semestr, 5 kreditů, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

1.Základní rovnice matematické teorie pružnosti. Diferenciální rovnice rovnováhy, rovnice geometrické, obecný Hookeův zákon. Okrajové podmínky.
2.Diferenciální formulace úlohy pružnosti v posuvech. Možnosti řešení. Variační formulace, princip virtuálních prací, Lagrangeův variační princip.
3.Misesova podmínka plasticity. Kinematické a isotropické zpevnění. Pragerova a Zieglerova podmínka pro posuv plochy plasticity.
4.Asociovaná teorie plastického tečení se smíšeným zpevněním. Základní předpoklady. Pravidlo normality, princip superposice přetvoření.
5.Deformační varianta metody konečných prvků (MKP) pro rovinnou úlohu. Triangulace, aproximační funkce pro posuvy, diskretisace úlohy.
6.Rovnice rovnováhy MKP pro element a celé těleso. Lokální a globální matice tuhosti.
7. Základy lineární lomové mechaniky. Faktor intenzity napětí (FIN) K, J - integrál, otevření čela trhliny CTOD. Napjatost a deformace pro tři základní módy I, II a III.
8.Paris-Erdoganův zákon. Zbytková životnost tělesa s definovanou trhlinou. Možnosti určování FIN pro obecně položenou trhlinu pomocí MKP.
9. Mechanika kompozitních materiálů. Definice a základní pojmy, klasifikace kompozitů. Mechanické vlastnosti vláken a materiálů matrice.
10. Základy mikromechaniky a homogenizace kompozitních materiálů. Hookeův zákon pro isotropický, ortotropický a transversálně ortotropický materiál v hlavních osách ortotropie a v obecném směru. Směrová matice tuhosti.
11. Jednosměrový dlouhovláknový kompozit namáhaný v podélném směru. Modul pružnosti v tahu a pevnost. Kritický a minimální objem vláken.
12.Krátkovláknový jednosměrový kompozit. Teorie přenosu zatížení. Přenosová a kritická délka. Modul pružnosti v tahu a pevnost.
13. Mechanismy zhouževnatění kompozitů s křehkou matricí.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

1.Základní rovnice matematické teorie pružnosti. Rovnice rovnováhy. Geometrické rovnice. Obecný Hookeův zákon.
2. Napjatost v bodě tělesa.
3.Diferenciální formulace úlohy pružnosti v posuvech. Lamého rovnice. Podmínky plasticity.
4. Princip virtuálních prací. Lagrangeův princip. Ritzova metoda.
5.Deformační varianta metody konečných prvků (MKP) a základní rovnice MKP. Úvod do MKP systému ANSYS, základní typy prvků.
6.Tvorba modelu v MKP systému ANSYS. Řešení jednoduché prutové konstrukce ve 2D.
7.Prutová konstrukce v prostoru v MKP systému ANSYS.
8.Rovinné úlohy lineární pružnosti. Výpočet lomově-mechanických parametrů - faktor intenzity napětí (FIN) K, J - integrál, otevření čela trhliny CTOD.
9. Stanovení plastické zóny na čele trhliny pomocí MKP s využitím různých podmínek plasticity.
10. Homogenizace vláknového kompozitu pomocí MKP- charakteristiky v podélném směru
11.. Homogenizace vláknového kompozitu pomocí MKP- charakteristiky v příčném směru. Efektivní teplotní roztažnost kompozitu v různých směrech.
12.Zápočtový projekt.
13.Zápočet.

Elektronické učební texty

Vrbka, J.: Aplikovaná mechanika. Ústav mechaniky těles, mechatroniky a biomechaniky. FSI VUT v Brně, Brno, 2012 (cs)