Detail předmětu

Umělá inteligence v medicíně

FEKT-AUINAk. rok: 2019/2020

Předmět je orientován na základní typy neuronových sítí (se zpětným šířením chyby, Hammingova, Kohonenova síť). Druhá část je zaměřena na hierarchické a nehierarchické metody shlukové analýzy. Třetí část se zaměřuje na teorií fuzzy množin, fuzzy relací, fuzzy logiku, fuzzy inference a na postupy přibližného usuzování. Následuji metody pro výběr relevantních atributů a pro hodnocení výsledků dosažených pomocí výše popsaných prostředků umělé inteligence.

Výsledky učení předmětu

Absolvent předmětu
- ovládá principy neuronových sítí (se zpětným šířením chyby, Hammingova, Kohonenova síť),
- je schopen realizovat shlukovou analýzu pomocí nehierarchických a hierarchických metod,
- je schopen vysvětlit princip fuzzy inference a přibližného usuzování,
- je schopen provést výběr relevantních atributů pro následnou analýzu,
- je schopen provést hodnocení úspěšnosti algoritmů strojového učení,
- je schopen uvést příklady využití výše popsaných algoritmů v biomedicínských aplikacích.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia. Znalost teorie množin. V laboratorní výuce předpokládáme znalost programového prostředí Matlab.

Doporučená nebo povinná literatura

Kozumplík, J., Provazník, I.: Umělá inteligence v medicíně. Elektronická skripta. ÚBMI FEKT VUT v Brně, Brno, 2007. (CS)
Šnorek, M.: Neuronové sítě a neuropočítače. Skripta ČVUT, Praha, 2002 (CS)
Giarratano, J.C., Riley, G.D.: Expert Systems. Principles and Programming (4th Edition). Course Technology, Thomson Learning Inc., Canada, 2005, ISBN 0-534-38447-1 (EN)
Jura, P.: Základy fuzzy logiky pro řízení a modelování.VUT v Brně, nakl. VUTIUM, Brno 2003, ISBN 80-214-2261-0 (CS)
Romesburg,H.,Ch.: Cluster Analysis for Researchers. Lulu Press, North Carolina, 2004 (EN)
Gan G., Ma Ch., Wu J.: Data Clustering. Theory, Algorithms and Applications. ASA-SIAM Series on Statistics and Applied Probability, Philadelphia, 2007 (EN)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky a cvičení na počítači. Předmět využívá e-learning. Studenti řeší dva samostatné úkoly (v půli a na konci semestru, v průběhu laboratorní výuky).

Způsob a kritéria hodnocení

Garant předmětu stanovuje pro akademický rok 2019/2020 následující bodové hodnocení předmětu
a podmínky pro získání zápočtu a úspěšné absolvování předmětu AUIN:

Bodové hodnocení předmětu

Týmový projekt (max. 25 bodů):
• zpracování originálního řešení týmového projektu a jeho obhajoba na konci semestru (podle pokynů)

Pozn.:
- hodnoceno bude splnění zadání a kvalita prezentace výsledků všemi členy týmu
- plagiátorství bude mít za následek neudělení zápočtu

Závěrečná zkouška (max. 75 bodů):
• kombinovaná forma (písemná i ústní)
• celkem tři části, každá za max. 25 bodů

Podmínky pro udělení zápočtu a připuštění k závěrečné zkoušce
• získání nenulového počtu bodů za týmový projekt
• maximálně dvě omluvené neúčastí na cvičeních

Podmínky pro úspěšné absolvování předmětu
• získání zápočtu
• získání nejméně 12 bodů z každé ze tří částí zkoušky
• získání celkem (tj. z týmového projektu a zkoušky) alespoň 50 bodů

Jazyk výuky

čeština

Osnovy výuky

1. Úvod do umělé inteligence.
2. Umělé neuronové sítě, neuron a jeho charakteristiky, neuron jako klasifikátor.
3. Učení neuronu s binárními a reálnými vstupy a výstupy, jednovrstvý perceptron.
4. Vícevrstvá dopředná síť, algoritmus zpětného šíření chyby.
5. Hammingova síť, Kohonenova síť.
6. Shluková analýza, hierarchické metody shlukové analýzy.
7. Nehierarchické metody shlukové analýzy, algoritmus k-průměrů.
8. Fuzzy množiny, fuzzy relace.
9. Logika, fuzzy logika, fuzzy inference, přibližné usuzování.
10. Výběr relevantních příznaků a dekorelace příznaků.
11. Hodnocení úspěšnosti klasifikačních, predikčních a aproximačních algoritmů.
12. Biomedicínské aplikace metod strojového učení.

Cíl

Získání znalostí o umělých neuronových sítích, seznámení se s hierarchickými a nehierarchickými metodami shlukové analýzy, teorií fuzzy množin, fuzzy relací, fuzzy logikou, fuzzy inferencí a s postupy přibližného usuzování. Dále s metodami pro výběr relevantních atributů a pro hodnocení výsledků dosažených pomocí výše popsaných metod.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu (viz Rozvrhové jednotky).
V zásadě:
- povinné počítačové cvičení (zmeškaná laboratorní cvičení musí být řádně omluvená a lze je nahradit po domluvě s vyučujícím)
- nepovinná přednáška

Zařazení předmětu ve studijních plánech

  • Program BTBIO-A bakalářský

    obor A-BTB , 3. ročník, zimní semestr, 5 kreditů, povinný

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1. ročník, zimní semestr, 5 kreditů, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení na poč.

26 hod., povinná

Vyučující / Lektor

eLearning