Detail předmětu
Applied Analytical Statistics
FP-BAASEAk. rok: 2019/2020
Studenti získají základní znalosti náhodných veličin diskrétního, spojitého typu a jejich důležitých typů rozdělení, zpracování datových souborů kvantitativního a kvalitativního znaku, bodových a intervalových odhadů, nejpoužívanějších parametrických testů a testů dobré shody, jednoduchých a složených indexů, lineárních a nelineárních regresních modelů a analýzy časových řad.
Garant předmětu
Zajišťuje ústav
Nabízen zahradničním studentům
Všech fakult
Výsledky učení předmětu
Studenti získají základní znalosti náhodných veličin diskrétního, spojitého typu a jejich důležitých typů rozdělení, zpracování datových souborů kvantitativního a kvalitativního znaku, bodových a intervalových odhadů, nejpoužívanějších parametrických testů a testů dobré shody, jednoduchých a složených indexů, lineárních a nelineárních regresních modelů a analýzy časových řad, a budou schopni tyto znalosti za pomoci statistických programů vhodně aplikovat v reálném podnikatelském prostředí tak, aby byli schopni obdržet relevantní informace potřebné pro podporu řízení podnikatelských činností.
Prerekvizity
Základy lineární algebry, matematické analýzy a pravděpodobnosti.
Množiny, množinové operace, pojmy z kombinatoriky, derivace, integrál, klasická pravděpodobnost, podmíněná pravděpodobnost.
Doporučená nebo povinná literatura
KARPÍŠEK, Z. a M. DRDLA. Applied Statistics. Brno University of Technology, Faculty of Business and Management. Brno, 1999. ISBN 80-214-1493-6. (EN)
FIELD, A., J. MILES and Z. FIELD. Discovering Statistics Using R. 1 edition. Los Angeles, Calif.: SAGE Publications Ltd., 2012. ISBN 978-1-4462-0046-9. (EN)
BOX, George E. P., William Gordon HUNTER a J. Stuart HUNTER, 1978. Statistics for experimenters: an introduction to design, data analysis, and model building. B.m.: Wiley. ISBN 978-0-471-09315-2. (EN)
MATHEWS, P. Design of Experiments with Minitab. Milwaukee: ASQ Quality Press, 2005. ISBN 978-08-738-9637-5. (EN)
MONTGOMERY, Douglas C., 2008. Design and Analysis of Experiments. B.m.: John Wiley & Sons. ISBN 978-0-470-12866-4. (EN)
Plánované vzdělávací činnosti a výukové metody
Výuka probíhá formou přednášek, které mají charakter výkladu základních principů, metodologie dané disciplíny a problémů. Cvičení podporují zejména praktické ovládnutí látky vyložené na přednáškách.
Způsob a kritéria hodnocení
Výsledná známka, která odpovídá součtu dosažených bodů (max. 100 bodů), se skládá z:
- Bodů dosažených z odpovědí na teoretické otázky,
- Bodů dosažených z výpočtových úloh.
Student získá hodnocení po krátkém rozhovor s učitelem, kdy se vyhodnocuje jeho / její práci.
Známky a jim odpovídající body:
(100-91), B (90-81), C (80 až 71), D (70 až 61), E (60-50), F (49-0).
Jazyk výuky
angličtina
Osnovy výuky
1. týden. Náhodné veličiny (diskrétní a spojité), jejich číslené charakteristiky (střední hodnota, rozptyl, směrodatná odchylka) a zákony rozdělení (distribuční funkce, pravděpodobnostní funkce, hustota pravděpodobnosti).
2. týden. Speciální typy rozdělení diskrétní a spojité náhodné veličiny (binomické, geometrické, hypergeometrické, normální, exponenciální a logaritmicko-normální rozdělení).
3. týden. Dvourozměrný náhodný vektor a jeho charakteristiky (koeficient kovariance a korelace).
4. týden. Základní pojmy matematické statistiky a zpracování malých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
5. týden. Zpracování velkých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
6. týden. Bodové a intervalové odhady parametrů znaku základního souboru.
7. týden. Základní pojmy, principy a postupy testování statistických hypotéz.
8. týden. Základní parametrické testy (jednovýběrový a dvouvýběrový t-test, F-test) a testy dobré shody (Pearsonův test, Kolmogorovův-Smirnovův test).
9. týden. Základní pojmy z indexní analýzy (intenzitní ukaztel, extenzitní ukazatel, index).
10. týden. Jednoduché a složené (individuální a agregátní) indexy.
11. týden. Základní pojmy a principy regresní analýzy, metoda nejmenších čtverců a lineární regresní funkce.
12. týden. Nelineární regresní funkce (linearizovatelné a speciální nelinearizovatelné), volba vhodné regresní funkce.
13. týden. Základní charakteristiky časových řad (první diference, keoficient růstu), dekompozice časových řad (trendová a sezónní složka časových řad).
Cíl
Studenti budou seznámeni se základními pojmy náhodných veličin dikrétního, spojitého typu a jejich důležitých rozdělení, zpracování datových souborů, bodových a intervalových odhadů, testování statistických hypotéz, lineárních a nelineárních regresních modelů a analýzy časových řad. Studenti budou schopni využít příslušné metody při řešení informatických a ekonomických problémů. Po absolvování předmětu budou studenti připraveni za pomoci statistických programů prakticky použít tyto metody v navazujících informatických a ekonomických předmětech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách není povinná ale doporučuje se. Účast na cvičeních je kontrolovaná.
Omluvená neúčast studenta na cvičení může být nahrazena náhradními úkoly.
Typ (způsob) výuky
eLearning
eLearning: aktuální otevřený kurz