Detail předmětu
MKP v inženýrských výpočtech
FSI-RIVAk. rok: 2018/2019
Obsahovou náplní předmětu je stručná informace o podstatě vybraných numerických metod v mechanice kontinua (metoda sítí, hraničních prvků) a zejména hlubší seznámení s metodou konečných prvků, v současnosti nejpoužívanější. Jsou uvedeny formulační souvislosti MKP s Ritzovou metodou, podrobně je prezentován algoritmus, teoretické základy a pojmy z oblasti MKP (diskretizace kontinua, typy prvků, bázové funkce, prvkové a globální matice, pre- a postprocessing apod.). Posluchači absolvují teoreticky a při cvičení též aktivně příklady nasazení MKP v tradičních oblastech mechaniky: v lineární pružnosti, dynamice (modální analýza i časově nestacionární děj) a vedení tepla (včetně svázané úlohy tepelně deformační). V praktické části je kladen důraz na obecné zásady tvorby výpočtových modelů strojních konstrukcí, řešených pomocí MKP.
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Absolvent kurzu dokáže pro daný problém mechaniky formulovat výpočtový model, vhodný pro efektivní numerické řešení. Samostatně se orientuje v dostupných programových systémech a na základě získaných teoretických znalostí a praktických dovedností je dokáže po elementárním zaškolení použít k tvůrčímu řešení inženýrských problémů.
Prerekvizity
Maticová symbolika, lineární algebra, funkce jedné a více promenných, integrální a diferenciální pocet, diferenciální rovnice, základy dynamiky, pružnosti a
vedení tepla.
Doporučená nebo povinná literatura
Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals, Elsevier, 2005
Z.Bittnar, J.Šejnoha: Numerické metody mechaniky 1, 2, Vydavatelství CVUT, Praha, 1992
R.D.Cook: Concepts and Applications of Finite Element Analysis, J.Wiley, 2001
J.Petruška: Počítačové metody mechaniky II, http://www.umt.fme.vutbr.cz/images/opory/MKP%20v%20inzenyrskych%20vypoctech/RIV.pdf
K.-J.Bathe: Finite Element Procedures, Prentice Hall, 1996
V.Kolář, I.Němec, V.Kanický: FEM principy a praxe metody konečných prvků, Computer Press, 2001
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Požadavky pro zápočet: - aktivní zvládnutí práce s vybraným systémem MKP - samostatné zpracování 1-2 (dle rozsahu) semestrálních projektů, jejich přednesení ostatním posluchačům a obhájení v diskusi s nimi. Klasifikace předmětu je dána výsledkem zkoušky, která má podobu písemného testu.
Jazyk výuky
čeština
Cíl
Cílem předmětu je seznámení posluchačů s numerickým přístupem k řešení problémů mechaniky pomocí Metody konečných prvků a získání přehledu o možnostech nabízených komerčních programových systémů MKP.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičení je povinná. Výuka ve cvičení je kontrolována průběžnými testy znalostí probírané látky, neúčast je možno nahradit samostatným procvičením zameškaných partií na počítačové učebně.
Zařazení předmětu ve studijních plánech
- Program B3A-P bakalářský
obor B-MET , 3. ročník, zimní semestr, 4 kredity, povinný
- Program M2A-P magisterský navazující
obor M-IMB , 1. ročník, zimní semestr, 5 kreditů, povinný
obor M-MTI , 1. ročník, zimní semestr, 4 kredity, volitelný (nepovinný) - Program M2I-P magisterský navazující
obor M-FLI , 2. ročník, zimní semestr, 4 kredity, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
Diskretizace úloh mechaniky kontinua u vybraných numerických metod
Variační formulace MKP, základní pojmy, historické poznámky
Ilustrace algoritmu MKP na jednorozměrné úloze lineární pružnosti
Prutové prvky v rovině a prostoru - nosníky, rámy, příhr. konstrukce
Rovinné a rotačně sym.prvky, topologie sítě a struktura matice tuhosti
Izoparametrická formulace a základní typy prostorových prvků
Přímé a iterační řešení soustavy, paralelizace, substruktury, makroprvky
Podmínky konvergence, kompatibilita, hierarchické a adaptivní algoritmy
Hermiteovské bázové funkce u tenkostěnných ohýbaných prvků
Deskové, stěnodeskové a skořepinové prvky, tenkostěnné konstrukce ve 3D
MKP v úlohách dynamiky, konzistentní a diagonální matice hmotnosti
MKP v úlohách vedení tepla, teplotní napjatost
Explicitni algoritmus MKP
Cvičení s počítačovou podporou
26 hod., povinná
Vyučující / Lektor
Osnova
Ukázka algoritmu metody sítí na vybrané úloze pružnosti
Aplikace Ritzovy metody na téže vybrané úloze
Prehled komercních systému MKP a jejich soucasných možností - ukázky
Základní príkazy systému ANSYS, potrebné v následujících cviceních
Rešení jednoduché prutové konstrukce ve 2D
Prutová konstrukce v prostoru
Rovinná úloha lineární pružnosti
Prostorová úloha - rozšírené možnosti pre- a postprocessingu
Konzultace k rešení sem.projektu
Konzultace k rešení sem.projektu
Úloha vlastního kmitání rešená pomocí systému ANSYS
Nestacionární úloha dynamiky, šíření napěťových vln
Prezentace a obhajoba sem.projektu