Detail předmětu
Číslicové signály a systémy
FEKT-MPC-CSIAk. rok: 2019/2020
Definice a klasifikace 1D a 2D diskrétních signálů a systémů. Příklady signálů a systémů. Spektrální analýza s využitím FFT. Spektrogramy a tekoucí spektra. Hilbertova transformace. Reprezentace pásmově omezených signálů. Decimace a interpolace. Transverzální a polyfázové filtry. Banky filtrů s dokonalou rekonstrukcí. Půlpásmové kvadraturní (QMF) filtry. Vlnková transformace. Analýza signálu s vícenásobným rozlišením. Náhodné veličiny, náhodné procesy a matematická statistika. Výkonová spektrální hustota a její odhad. Neparametrické metody výpočtu výkonové spektrální hustoty. Lineární predikční analýza. Parametrické metody pro výpočet výkonové spektrální hustoty. Komplexní a reálné kepstrum. V počítačových cvičeních si studenti ověří metody číslicového zpracování signálů v prostředí Matlab. Numerická cvičení budou zaměřena na příklady analýzy signálů a systémů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- definovat, popsat a vizualizovat diskrétní 1D a 2D signály
- vypočítat Fourierovská zobrazení, diskrétní kosinovu, Hilbertovu, vlnkovou a Z transformaci diskrétních signálů
- definovat diskrétní systémy a analyzovat jejich vlastnosti různými metodami
- měnit vzorkovací kmitočet signálů
- využívat analytický a komplexní signál
- používat banku číslicových filtrů
- provádět krátkodobou spektrální analýzu pomocí Gaborovy a krátkodobé Fourierovy transformace
- matematicky popsat náhodné procesy a testovat statistické hypotézy
- používat lineární predikční analýzu
- odhadovat výkonovou spektrální hustotu pomocí parametrických a neparametrických metod
- používat kepstrální analýzu a homomorfní filtraci
- provádět analýzu diskrétních signálů a systémů v prostředí Matlab
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Zkouška z předmětu bude probíhat prezenčně.
Osnovy výuky
2. Charakteristika a klasifikace diskrétních systémů
3. Analýza jednorozměrných LTI diskrétních systémů
4. Diskrétní kosinova transformace. Číslicové zpracování signálu se změnou vzorkovacího kmitočtu
5. Reprezentace pásmově omezených signálů
6. Banky číslicových filtrů
7. Krátkodobá spektrální analýza
8. Vlnková transformace a její souvislost s bankami číslicových filtrů
9. Náhodné procesy a jejich vlastnosti
10. Lineární predikční analýza
11. Neparametrické metody výpočtu výkonové spektrální hustoty
12. Parametrické metody výpočtu výkonové spektrální hustoty
13. Kepstrální analýza
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Charakteristika a klasifikace diskrétních systémů
3. Analýza jednorozměrných LTI diskrétních systémů
4. Diskrétní kosinova transformace. Číslicové zpracování signálu se změnou vzorkovacího kmitočtu
5. Reprezentace pásmově omezených signálů
6. Banky číslicových filtrů
7. Krátkodobá spektrální analýza
8. Vlnková transformace a její souvislost s bankami číslicových filtrů
9. Náhodné procesy a jejich vlastnosti
10. Lineární predikční analýza
11. Neparametrické metody výpočtu výkonové spektrální hustoty
12. Parametrické metody výpočtu výkonové spektrální hustoty
13. Kepstrální analýza
Cvičení na počítači
Vyučující / Lektor
Osnova
1. Základy práce v prostředí Matlab, generování základních deterministických signálů, možnosti zobrazení.
2. Diskrétní Fourierova transformace (DFT), rychlá DFT, kruhová konvoluce, zpracování signálu po blocích, metoda overlapp add, krátkodobá Fourierova analýza
3. Vlastnosti lineárních časově invariantních systémů (1), lineární diskrétní konvoluce, impulzní charakteristika
4. Vlastnosti lineárních časově invariantních systémů (2), přenosová funkce, kmitočtová charakteristika, rozložení nulových bodů a pólů
5. Návrh číslicových filtrů typu IIR
6. Test č. 1
7. Návrh číslicových filtrů typu FIR
8. Nadvzorkování a podvzorkování signálů v prostředí Matlab, změna vzorkovacího kmitočtu v poměru racionálního čísla
9. Banky číslicových filtrů, dokonalá rekonstrukce
10. Generování náhodných diskrétních signálů v prostředí Matlab, výpočet jejich momentů, korelace a kovariance, ověření stacionarity a ergodicity
11. Waveletová transformace v prostředí Matlab, použití wavelet toolbox
12. Test č. 2
13. Náhradní cvičení
Cvičení odborného základu
Vyučující / Lektor
Osnova
2. Vlastnosti lineárních časově invariantních systémů.
3. Lineární diskrétní konvoluce, kruhová konvoluce, rychlá konvoluce, impulzní charakteristika.
4. Přímá a zpětná transformace Z. Přenosová funkce a kmitočtová charakteristika. Rozložení nulových bodů a pólů.
5. Vnější a stavový popis. Maticový zápis soustavy stavových rovnic a jejich řešení.
6. Grafy signálových toků a Masonovo pravidlo. Spojování systémů z dílčích sekcí.
7. Vytváření periodické sudé posloupnosti z jednorázové posloupnosti. Diskrétní kosinova transformace.
8. Vzorkování pásmově omezených signálů. Hilbertova transformace.
9. Vlnková transformace s diskrétním časem.
10. Distribuční funkce a hustota rozdělení pravděpodobnosti, obecné a centrální momenty. Stacionární a ergodické spojité a diskrétní náhodné procesy. Odhady, konsistentní odhad.
11. Náhodný výběr z rozdělení pravděpodobnosti, statistiky, testování statistických hypotéz, parametrické a neparametrické testy, testy dobré shody.
12. Výpočet lineárních predikčních koeficientů. Použití lineární predikční analýzy pro kompresi řečového signálu.
13. Reálné a komplexní spektrum.