Course detail

Medical Diagnostic Technology

FEKT-BPC-LDTAAcad. year: 2023/2024

The topics in this course cover operating principles and construction of diagnostic devices and systems for recording of electrical biosignals and non-electric characteristics from human body (ECG,EEG,EMG, EGG, impedance measurements, recording of blood pressure, measurement of blood flow, pletysmography, temperature measurment). The LabView programming environment is used for practicle experiences with acquisition and processing of different biosignal. The Vernier sensors and acquisition cards are used for this purpose as well.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Student should be able to describe basic pasive electronic components (resistance, inductance, capacitance) and should have knowledge about basic physical laws and properties of physical fields obtained in Physics I and II.

Rules for evaluation and completion of the course

Laboratory work - 0 - 20 points.
Test - 0 - 30 points.
Written exam - 0 - 50 points.
The test is oriented to basic terminology.
The written exam verify knowledge in principle of medical instrumentation.
Laboratory exercises are obligatory. Excused absence can be substituted.

Aims

The aim of this course is to provide a fundamental knowledge in acquisition of basic electric and non-electric biosignals and to provide a description and meaning about parameters provided by manufacturers of different medical devices.
Student will obtain knowledge about principles and properties of selected medical instrumentation used for diagnosis. Student will be able to apply this knowledge during data/signal interpretation or during specification and selection process of medical instruments. The student is able to:
- describe principles of bio-amplifiers,
- list and dicussed their properties,
- describe and explain principles of instrumentations for ECG, EEG and EMG sensing,
- describe and explain methods and devices for non-invasive and invasive blood pressure measurement,
- list methods for blood flow measurement,
- explain dilution method for blood flow measurement,
- apply Doppler principle for blood flow measurement,
- define principle of methods in pletysmography,
- discuss and define source of errors in selected diagnostic approaches,
- explain term "vital function monitoring"

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Navrátil,L., Rosina,J.: Medicínská biofyzika, Grada, 2005 (CS)
Chmelař M.: Lékařská přístrojová technika 1, Akademické nakladatelství CERM, 1995 (CS)
Chmelař M.: Lékařská laboratorní technika, skriptum VUT 2000 (CS)
Rozman, J. a kol.: Elektronické přístroje v lékařství, Academia, 2006 (CS)
Kolář, R: Lékařská diagnostická technika, elektronická skripta VUT, 2007 (CS)
Webster, J.G., Nimunkar, A.J.: Medical Instrumentation: Application and Design, Wiley, 2020 (CS)
Navrátil,L., Rosina,J.: Medicínská biofyzika, Grada, 2019 (CS)

Recommended reading

Bronzino, J.D. The Biomedical engineering Handbook, CRC Press, Boca Raton 1995 (EN)

Classification of course in study plans

  • Programme BPC-BTB Bachelor's, 3. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Recording electrodes, polarisation of electrodes, types of electrodes
2. Amplifiers for biological signals, requirements and solutions.
3. Electrocardiography, EKG characteristics, the principle of operation and parameters of the device,
used recording systems, analysis and evaluation of EKG, automated electrocardiographs with
diagnostic characteristics.
4. Electroencelophalography, EEG characteristics, the principle and parameters of the apparatus,
methods of recording and evaluating brain signals, supplementary devices (photostimulator,
phonostimulator).
5. Other biological electric signals - electromyograph, electroretinogram, electrooculogram.
6. Phonocardiography.
7. Pletysmography - tissue volume measurment.
8. Blood pressure measurement, invasive and non-invasive measurement, the principles of employed
methods
9. Devices for measurement of breathing, ‚apnea alarm‘, breath volumes.
10. Devices for blood flow measurement.
11. Temperature measurement.
10. The principles of monitoring techniques, operation of monitors and their connection to hospital
information system

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. LabView - introduction, basic mathematical operations.
2. LabView - signal filtering, spectral analysis.
3. LabView - files, data acquisition.
4. EEG signal processing, individual work.
5. LabPro in LabView.
6. LabView - R wave detection in ECG signal I, individual work
7. LabView - R wave detection in ECG signal II, individual work
8. LabView - R wave detection in ECG signal III, individual work
9. Introduction to electronic measurment.
10. Antialiasign filter design
11. Hardware realization of antialiasing.
12. Practical lab with medical ultrasound device, fundus camera, spirometer, audiometer.
13. Test