Course detail

Quantum and Laser Electronics

FEKT-MKC-KVEAcad. year: 2021/2022

Students will learn the basic postulates of quantum mechanics, Schrödinger equation, the wave function, the uncertainty principle, statistical thermodynamics, interactions of radiation and matter, the basic properties of laser radiation, principles and characteristics of lasers, laser detection, and the effects of laser radiation on the human body and the use of lasers in medicine, industry and telecommunications. Students will be acquainted with electromagnetic spectroscopy and electron and optical microscopy. In the individual project, students will solve specific laser application.

Learning outcomes of the course unit

The graduate is able: (a) to describe basic principles of quantum theory and statistical thermodynamics; (b) to describe the interaction of radiation and matter; (c) to explain the principle of laser function; (d) to compare particular laser types and to discuss their advantages and disadvantages; (e) to describe the effects of laser radiation on the human body; (f) to name and to describe practical applications of lasers; (g) describe and explain the principles of electromagnetic spectroscopy; (h) describe the function principle and compare electron and optical microscopes.


The subject knowledge on the Bachelor´s degree level is requested.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

WILFERT, O. Kvantová a laserová elektronika. Učební text. UREL VUT v Brně, Brno 2012. (CS)
SALEH, Bahaa E. A a Malvin Carl TEICH. Základy fotoniky. Praha: Matfyzpress, 1994. ISBN 80-85863-00-6. (CS)

Planned learning activities and teaching methods

Teaching methods include lectures, numerical and practical laboratories. Course is taking advantage of e-learning (Moodle) system. Students have to write a single project during the course.

Assesment methods and criteria linked to learning outcomes

Evaluation: 2 tests (up to 12 points for both tests), 5 laboratory exercises (up to 20 points) and 1 individual project (up to 8 points). The test has a compulsory written part (up to 40 points) and a compulsory oral part (up 20 points). The content of the exam corresponds to the subject annotation.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction to quantum and laser electronics.
2. Elementary particles and their properties.
3. Structure of matter and statistical thermodynamics.
4. Interaction of radiation with matter.
5. Optical resonators.
6. Laser theory.
7. The theory of laser diodes and LEDs.
8. Gas and solid lasers.
9. Semiconductor and Fiber lasers.
10. Electromagnetic Spectroscopy.
11. Electron and optical microscopy.
12. Advanced photonic systems.
13. Applications of laser and quantum electronics.


The aim of the course is to acquaint students with the quantum theory and statistical thermodynamics, to explain the interaction of radiation and matter, to show the special characteristics of laser radiation and explain the operating principles of lasers. Another goal is to introduce the types of lasers, their parameters and usage, analyze the effects of laser radiation on the human body and demonstrate the use of lasers in medicine, industry and telecommunications. Students will also become acquainted with the principle of electromagnetic spectroscopy, electron and optical microscopy and advanced photonic systems.

Specification of controlled education, way of implementation and compensation for absences

Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Classification of course in study plans

  • Programme MKC-TIT Master's, 1. year of study, winter semester, 5 credits, compulsory-optional
  • Programme MKC-EKT Master's, 2. year of study, winter semester, 5 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer

Fundamentals seminar

13 hours, compulsory

Teacher / Lecturer

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer