Course detail
Advanced Materials in Design
FSI-YAMAcad. year: 2020/2021
The course focuses on the use of modern, nontraditional materials in the field of industrial design and on their properties. Students will be able to apply advanced materials because of their advantageous physical properties, which will create original inventive designs with new aesthetic and functional properties.
The aim of the subject is to master work with materials in industrial design, to use progressive properties and to deepen the perception of language of materials such as structure, surface, color and sensory properties. Material analysis of products, especially the material composition of individual components, will increase student awareness of the product lifecycle.
Language of instruction
Number of ECTS credits
Mode of study
Learning outcomes of the course unit
- The ability of environmental impact analysis.
- The ability to identify the ecological aspects of design work.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The resulting classification is determined by the ECTS scale.
ECTS / POINT EVALUATION / NUMBERING CLASSIFICATION
A / 100-90 / 1 / excellent
B / 89-80 / 1.5 / very good
C / 79-70 / 2 / good
D / 69-60 / 2.5 / satisfactory
E / 59-50 / 3 / sufficient
F / 49-0 / 4 / fail.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
ASHBY, M. F., c2009. Materials and the environment: eco-informed material choice. Burlington: Butterworth-Heinemann. ISBN 978-1-85617-608-8. (EN)
GILES F. CARTER AND DONALD E. PAUL., 1991. Materials science. Materials Park, Ohio: ASM International. ISBN 978-161-5039-845. (EN)
ISO 14044:2006: Environmental management -- Life cycle assessment -- Requirements and guidelines, 2006. Switzerland: International Organization for Standardization (EN)
KULA, Daniel, Elodie TERNAUX a Quentin HIRSINGER. c2012. Materiology: průvodce světem materiálů a technologií pro architekty a designéry. Praha: Happy Materials. ISBN 978-80-260-0538-4 (CS)
MateriO’ | the material library your projects deserve [online]. 2016. Paris: materiO’ [cit. 2016-10-20]. Dostupné z: https://materio.com/ (EN)
Recommended reading
Intro to Life Cycle Analysis, 2012. MIT - Massachusetts Institute of Technology [online]. Cambridge: MIT [cit. 2017-10-26]. Dostupné z: http://web.mit.edu/2.813/www/Class%20Slides%202012/LCA.pdf (EN)
Směrnice Evropského parlamentu a Rady 2009/125/ES, 2009. EUR-Lex - Access to European Union law - choose your language [online]. [cit. 2017-10-27]. Dostupné z: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:285:0010:0035:CS:PDF (CS)
SOPHIE HALLSTEDT., 2008. A foundation for sustainable product development. Karlskrona: Department of Mechanical Engineering, Blekinge Institute of Technology. ISBN 978-917-2951-365. (EN)
Elearning
Classification of course in study plans
- Programme B-PDS-P Bachelor's 2 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Production options (injection molding, 3D printing, bending, ...).
- Material analysis of selected products with subsequent product lifecycle processing.
- Polymers (meaning, properties, use).
- Composites (meaning, properties, use).
- Metals (meaning, properties, use).
- Glass (meaning, properties, use).
- Textile materials (meaning, properties, use).
- Concrete and ceramics (meaning, properties, use).
- Recycled and multi-circular materials (meaning, properties, uses).
- Interactive materials (meaning, properties, use).
- Bonding of semi-finished products (meaning, properties, use).
- Potential of products using non-traditional materials.
Studio work
Teacher / Lecturer
Syllabus
- Get familiar with eco-design tools.
- Assessment of material composition of current products, subsequent product life cycle analysis.
- Design concept from advanced materials.
- Product Design of Advanced Materials.
- Design concept from advanced materials, credit test.
- Design of advanced materials products.
- Product Design of Advanced Materials.
- Design of advanced materials products.
- Oral presentation of assigned tasks students.
- Credit test, product life cycle analysis of the product.
Elearning