Course detail

Reliability and Quality

FSI-SSJAcad. year: 2020/2021

The course is concerned with the reliability theory and quality control methods: functional and numerical characteristics of lifetime, selected probability distributions, calculation of system reliability, statistical methods for measure lifetime date, process capability analysis, control charts, principles of statistical acceptance procedure. Elaboration of project of reliability and quality control out using the software Statistica and Minitab.

Learning outcomes of the course unit

Students acquire needed knowledge from the important area of the reliability theory and quality control, which will enable them using a PC model and determine important quality characteristics of technical systems and processes on the basis of statistical data.


Mastering basic and advanced methods of probability theory and mathematical statistics is assumed.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Kupka, K.: Statistické řízení jakosti, , 0 (CS)
Ryan, T. P.: Statistical Methods for Quality Improvement , Wiley, 2011 (EN)
Montgomery, Douglas C.:Introduction to Statistical Quality Control /New York :John Wiley & Sons,2001. 4 ed. 796 s. ISBN 0-471-31648-2 (EN)
Militký, J.: Statistické techniky v řízení jakosti, , 0 (CS)
Ireson, Grant W. Handbook of Reliability Engineering and Management.Hong Kong :McGraw-Hill,1996. 1st Ed. nestr. ISBN 0070127506 (EN)

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Credit conditions: project elaboration.
Conditions for passing the exam: mastering practical examples on a PC.

Language of instruction


Work placements

Not applicable.


The course objective is to make students majoring in Mathematical Engineering acquainted with methods of the reliability theory for modelling and assessing technical systems reliability, with methods of mathematical statistics used for quality control of processing, and with a personal project solution using statistical software.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is controlled and the teacher decides on the compensation for absences.

Classification of course in study plans

  • Programme M2A-P Master's

    branch M-MAI , 2. year of study, winter semester, 4 credits, compulsory-optional

Type of course unit



26 hours, optionally

Teacher / Lecturer


Interval estimates in technical practice.
Hypothesis testing in technical practice.
Measurement system analysis.
Stability and capability of the process.
Basic concepts of object reliability.
Functional and numerical characteristics of reliability.
Probability distribution of time to failure.
Estimates for uncensored and censored selections.

Computer-assisted exercise

13 hours, compulsory

Teacher / Lecturer


Progressive PC software for statistical quality control.
Functional characteristics of reliability.
Numerical characteristics of reliability.
Properties of probability distributions of time to failure.
Truncated kinds and mixtures of probability distributions of time to failure.
Reliability direct evaluation of elements system.
Reliability evaluation of elements system by means of graph methods.
Estimation for censored and non-censored samples.
Stability and capability of process.
Process control by variables and attributes.
Statistical acceptance inspections by variables and attributes.
Pareto analysis, tolerance limits.
Fuzzy reliability.