Course detail

Biomechanics III

FSI-RBMAcad. year: 2020/2021

The course aims at deeper understanding of biomechanical problems in cardio-vascular system. It presents overview of mechanical properties of its elements, analysis of their importance from the point of view of biomechanics and possible ways of their computational modelling. It deals with specific models of soft tissues (material non-linearity, anisotropic hyperelasticity, active contraction) based on description of their fibrous non-homogeneous structure. It presents the mechanical structure of animal cell and principles of its modelling. It offers an overview of basic reological properties of blood and modelling of pulsatile flow in a compliant tube. . Further, man-made replacements used in cardio-vascular surgery are dealt with (artificial cardiac pumps, heart valves, arterial stents, vascular grafts). It deals with their construction principles, specific requirements and materials and possibilities of improvement of their properties. Possibilities of exploitation of ANSYS software in cardiovascular mechanics and its limitations are presented.

Learning outcomes of the course unit

Students will have a clear idea of basic biomechanical problems of cardiovascular system and of the implants used in it. They will be able to model these problems at the actual level of scientific knowledge and of technological equipment. They deepen their skills in computational modelling of many specific material properties of advanced materials used in technology (anisotropic, viscoelasticitic, hyperelastic models of materials, as well as shape memory alloys). They get acquainted with computational modelling of non-Newtonian liquids and their flow in compliant tubes (fluid-structure interaction).


Knowledge of basic terms of theory of elasticity and selected theories in the range of the course 5PP-A (stress, strain, general Hooke's law, membrane theory of shells, thick-wall cylindrical vessel). Knowledge of basic medical terms and structure of cardio-vascular system at the level ot the course Biomechanics I. Description of mechanical properties of materials under large strains using hyperelastic constitutive models including anisotropic ones. Basic properties of Newtonian liquids (viscosity), theory of linear viscoelasticity. Fundamentals of FEM and basic handling of ANSYS system.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Ethier, Simmons: Introductory biomechanics. Cambridge University Press, 2007. (EN)
HOLIBKOVÁ, Alžběta a Stanislav LAICHMAN. Přehled anatomie člověka. 5. vyd. Olomouc: Univerzita Palackého v Olomouci, 2010. ISBN 978-80-244-2615-0. (CS)
Křen J., Rosenberg J., Janíček P.: Biomechanika. Vydavatelství ZČU, 1997. (CS)
Fung: Biomechanics. Mechanical properties of living tissues.Springer, 1993. (EN)
Holzapfel G.A., Ogden R.W.: Biomechanics of soft tissue in cardiovascular system. Springer 2003. (EN)
Trojan S. , Schrieber M.: Atlas biologie člověka. Scientia, 2013 (CS)
Humphrey: Cardiovascular solid mechanics. Cells, Tissues and Organs.Springer, 2002. (EN)

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Seminars are focused on practical exercising of the topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Active participation in seminars, final project and its defence, test of basic theoretical knowledge.

Language of instruction


Work placements

Not applicable.


The enlarge the knowledge from the course in Biomechanics I about properties of cardiovascular system elements and implants, especially about those important for mechanics. Students are made familiar with modelling of mechanical behaviour of these elements at the level corresponding to the actual state of science and to the possibilities of existing hardware and software. They get familiar with implants applied in the cardio-vascular system and principals of their design.

Specification of controlled education, way of implementation and compensation for absences

Attendance at practical training is obligatory. An apologized absence can be compensed by individual projects controlled by the tutor.

Classification of course in study plans

  • Programme M2A-P Master's

    branch M-IMB , 2. year of study, summer semester, 5 credits, compulsory-optional
    branch M-MET , 2. year of study, summer semester, 5 credits, compulsory-optional

Type of course unit



26 hours, optionally

Teacher / Lecturer


1.Introduction, contents of the course, mechanical properties of arteries and their experimental evaluation.
2. Definition of cardio-vascular system, fundamentals of its anatomy.
3. Fundamentals of physiological processes in heart and blood vessels, residual stress in arteries.
4. Structure and rheological properties of blood, models of blood behaviour, velocity profiles of non-Newtonean liquids, Fahraeus-Lindqvist effect.
5. Structure and components of vascular and myocardial walls, mechanical properties of components.
6. Constitutive models of soft tissues based on structural arrangement of collagen fibres.
7. Mechanical properties of cells, cytoskeleton and its computational modelling as a tensegrity structure.
8. Mechanical influence on atherosclerotic processes, principals of treatments.
9. Arterial stents, principals of function, design and production.
10. Systemization of replacements of organs, transplants, vascular grafts, their types, properties, aplication and production.
11.Natural and artificial heart valves, principals of function, overview of products.
12.Ventricular assist devices and total artificial hearts.
13.Actual possibilities of FEM in modelling of heart and blood vessels.

Computer-assisted exercise

13 hours, compulsory

Teacher / Lecturer


Calculation of parameters of blood flow and analytical computations of stress in blood vessel wall - limitations.
Isotropic hyperelastic constitutive models of arterial wall, residual stress.
Alternative appproaches to calculation of residual stresses in arterial wall.
Computational modelling of flow in a compliant artery -fluid-structure interaction.
Tensegrity-based computational model of cell cytoskeleton.
Anisotropic model of contraction of left heart ventricle.
Formulation of semester projects for course unit credit.