Course detail

Analysis of Machine-part Failures

FSI-GA0Acad. year: 2020/2021

In the introductory part of the course, students are familiarized with the fundamental mechanisms of production and operation degradation in metallic materials used in engineering. The knowledge obtained will enable students to determine limit states more accurately, to use materials more effectively and to give a qualified appraisal of failure causes. Students will also be made familiar with methods for determining the causes of defects in machine parts, using specific examples taken over from the literature and from the lecturer´s practical experience (e.g. automobile and aircraft technologies, power engineering facilities, pressure vessels, production machines, etc.). As an integral part of the course, additional information is provided on the most frequently used experimental techniques (chemical analyses, inclusive of microanalysis, metallography, and fractography).

Learning outcomes of the course unit

Students learn to regard materials as chemically and structurally heterogeneous systems, whose behaviour in real operation conditions is influenced exactly by these heterogeneities. The methodology used in seeking the causes of machine part failures will enable students to solve these problems in connection with the interplay of heterogeneous material, type of loading, and action of ambient environment.


The basic knowledge in the field of materials engineering on the level of introductory courses in Bachelor degree studies. In-depth knowledge of limit states, in particular the problems of testing mechanical properties and failure mechanisms. General orientation in the area of problems of strength calculations of machine parts.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

1. STRNADEL Bohumil. NAUKA O MATERIÁLU II.Degradační procesy a design konstrukčních materiálů. Ostrava: VŠB-TU Ostrava, 2008. ISBN978-80-248-1842-9. (CS)
WULPI Donald J. Understanding How Components Fail. 2nd ed. Materials Park OH: ASM International, 2001, 293 s..ISBN 0-871-70-631-8. (EN)
3. BERK, Joseph Systems Failure Analysis, Materials Park OH: ASM Internationals: 2009, 214 s. ISBN 978-1615030125. (EN)
Edit. Khelefa A. Esaklul. Handbook of Case Histories in Failure Analysis. Vol. 1. 2 Materials Park OH: ASM International, 1996. ISBN 0-87170-495-1. (EN)
BERK, Joseph Systems Failure Analysis, Materials Park OH: ASM Internationals: 2009, 214 s. ISBN 978-1615030125. (EN)

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline.

Assesment methods and criteria linked to learning outcomes

Students are awarded for the course-unit credit on the basis of their individually prepared presentation and subsequent discussion (examinee and their colleagues, lecturer) on the topic delivered. Students choose presentation topics from handbooks, workshop proceedings or journals (in English or German) provided for this purpose.

Language of instruction


Work placements

Not applicable.


The objective of the course is to make students familiar with problems of the degradation of materials and with methods for assessing the causes of machine part failures on such a level that they are able to solve the respective problem individually or in cooperation with specialized workplaces.

Specification of controlled education, way of implementation and compensation for absences

There are no practical exercises, the only way of assessment is the "defence" of an individually prepared presentation.

Classification of course in study plans

  • Programme M2V-P Master's

    branch M-VSY , 1. year of study, winter semester, 4 credits, compulsory-optional

  • Programme M2I-P Master's

    branch M-VSR , 2. year of study, winter semester, 4 credits, elective
    branch M-KSB , 2. year of study, winter semester, 4 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer


1. Experimental methods most frequently used in analyses of the causes of failures (metallography - light and TEM microscopy, fractography - macro and micro, inclusive of REM, local microanalysis - EDS, WDS, AES).
2. Degradation of metallic materials in the course of production (metallurgy, welding, metal-forming, machining).
3.Chemical and related structural heterogeneity of metallic materials.
4. Examples of degradation processes in the course of operation (local types of corrosion, corrosion cracking, hydrogen embrittlement, radiation embrittlement, wear).
5. Methodology for assessing the causes of machine part failures, practical demonstrations.
6. Student presentations (see "Exam Form..."), practical demonstrations.