Course detail

Practical Chemistry for Electrical Engineers

FEKT-BPA-PCEAcad. year: 2020/2021

Atoms, molecules, orbitals, hybridization. Reaction, oxidation, reduction. Materials for electrotechnique. Liquids, gases, solutions and their physical properties. Chemical equilibration and reaction rates. The introduction to laboratory technique. Corrosion, surface treatment of materials. The introduction to photochemistry and electrochemistry. Electrochemical methods, electrochemical impedance spectroscopy.

Nabízen zahradničním studentům

Všech fakult

Learning outcomes of the course unit

The student will gain theoretic and applied knowledge in fundamentals of chemistry and electrochemistry. Based on this, the student will be able to precisely and safety perform any common laboratory practices, which are necessary for operation in chemical and electrochemical laboratories.


The subject is conceived as introduction to chemistry for students of electrical engineering, thus it does not requires any prerequisites except the knowledge of chemistry from secondary school and mandatory subjects of Electrotechnique I and II.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Jiří Barek, František Opekar, Karel Štulík: Elektroanalytická chemie, s. 188, ISBN 80-246-1146-5 (CS)
Miloslav Pekař: Přednášky z termodynamiky a elektrochemie, s. 148, ISBN 978-80-214-5079-0 (CS)
Peter Pelikán: Fyzikální chemie - struktura hmoty, ISBN 80-214-1583-6 (CS)
Antonín Růžička, Zdirad Žák, Aleš Mareček: Laboratorní technika a cvičení z anorganické chemie, s. 149 (CS)
Jaromír Tulka: Povrchové úpravy materiálů, ISBN 80-214-3062-4 (CS)
Božena Kábelová, Ivana Pilátová, Zdenka Hanáková: Laboratorní technika II, s. 113, ISBN 80-214-1450-2 (CS)

Planned learning activities and teaching methods

The methods of teaching are dependent on teaching process and are described in article 7 of Study and examination order of BUT.

Assesment methods and criteria linked to learning outcomes

The student will gain 20 points after performing all laboratory exercises and correct elaboration of all protocols. The final examination from laboratory knowledge will be scored by another 20 points. The minimal extent for elaboration of each laboratory exercise will be set by yearly actualized order of subject garant. Final oral examination will be scored by maximum of 60 points.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction to electrochemistry for electroengineers: the basic characteristics of atoms and molecules, chemical bonds, atomic and molecular weight.
2. Atomic orbitals, hybridization, concept of mol, concentration.
3. Chemical nomenclature, basic reactions, oxidation, reduction.
4. The characteristics of elements and materials for electrotechnique: metals, semiconductors, composites, polymers. Beketovov´s electropotential series.
5. Liquids and gases (fluids) - physical properties and their measurement.
6. Solutions, concentration, activity, ionic strength, pH, conductivity.
7. Chemical equilibration. Reaction rates.
8. Practical instruction for chemical laboratories. Equipment, laboratory facilities, and basic analytic methods.
9. Corrosion, stability of materials, advanced and smart materials. Phase diagrams.
10. Electromagnetic radiation and materials. Photosensitivity, degradation, light and energy.
11. Fundamentals of electrochemistry. Electrodes, galvanic and electrolytic cells.
12. Electrochemical methods, potentiometry and voltammetry.
13. The electronics of alternating current. Alternating electrochemical methods – electrochemical impedance spectroscopy.

Laboratory syllabus:
1. Laboratory equipment. Laboratory rules. Work with flammables, acids, corrosives, toxics and technical gases. The purity of chemicals.
2. Weighting of chemicals. Preparation of solutions, calculation of concentration. Solubility of chemical compounds in water. Measurement of liquids volume, pipette and burette.
3. Measurement of pH and temperature. Acid-base indicators, titration, titration curve and plotting.
4. Electrode potentials, verification of Nernst equation.
5. Conductivity – solid samples and ionic conductivity of electrolytes.
6. Ion selective electrodes (ISE). The study of ISE properties.
7. Electrochemical source of energy.
8. Hydrogen overpotential of metals.
9. Anodic oxidation of aluminium, preparation of thin layers. Characterization in scanning electron microscopy.
10. Passivation of metals in slow voltammetry. Polarization curves.
11. Electrochemical impedance spectroscopy.
12. Final examination test.


The subject is framed to bring basic as well as applied knowledge in chemistry and electrochemistry to students of semestral projects, bachelor and diploma thesis. The experimental courses in electrochemical and electrotechnical laboratories also inhered to the subject. The attention is paid to manipulation with laboratory equipments together with precise, reproducible and safe fundamental analytical practises, such as preparation of solutions, filtration, titration and weighting.

Specification of controlled education, way of implementation and compensation for absences

The conditions for successful passing will be set by yearly actualized order of subject garant.

Classification of course in study plans

  • Programme BPA-ELE Bachelor's

    specialization BPA-ECT , any year of study, summer semester, 5 credits, elective
    specialization BPA-PSA , any year of study, summer semester, 5 credits, elective

Type of course unit



26 hours, optionally

Teacher / Lecturer

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer