Course detail

# Structural Analysis 2

Principle of deflection methods and its variant. Calculation model and degree of kinematic indeterminacy. Deflection method for planar structures. Analysis of straight bar with variable cross-section. Local values, primary vector and stiffness matrix. Bar connected by joints, cantilever. Bar with constant cross-section. Geometric transformation, global matrix of bar. Analysis of bar systems, compilation of equations, localization. Determination of ended forces and diagram of components of internal forces at bars. Determination of reactions and controlling of solution. Another variants for building equations up.
Solution of rectangular frames and continuous girders. Temperature influences, shift of supports. Truss girder is solved by deflection method. Bar with variable cross-section with height linear ramping, determination of deflection coefficient. Solution of spatial frames using deflection method. Calculation model for simplified deflection method.

Department

Institute of Structural Mechanics (STM)

Learning outcomes of the course unit

The student will learn the structural analysis of the statically indeterminate planar bar systems by the stiffness method, namely plane frames and plane trusses, including the temperature effects and shifts of the supports.

Prerequisites

Static analysis of planar statically determinate truss systems, straight and cranked girders. Principle of virtual work and theorem of virtual work reciprocity and calculation of deflection of frame systems by using method of unit forces. Solution of planar frame structures using force method.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1. Introduction, content and outline of the subject. Meaning of deflection method, creation and development of this method, variants of deflection method. Calculation model and degree of kinematic indeterminacy.
2. General deflection method for planar frame structures. Equilibrium of conditions, parameters of deflection, bounded nodes. Scalar and matrix form.
3. Analysis of straight bar with variable cross-section: primary and secondary state.
4. Local values, primary vector and the stiffness matrix. Bar connected by joints, cantilever.
5. Bar with constant cross-section. Geometric transformation, global matrix of bar.
6. Analysis of the frame system, compilation of the system of equations, code number and localization.
7. Completion of solution of bars – calculation of internal forces and deflection at bars. Determination of reactions and controlling of the solution. Errors during the solution of frames by using deflection method. Another variant for assembly of equations.
8. Speciality of solution of rectangular frames and continuous girders. Temperature influences, shift of supports.
9. Truss girder is solved by using deflection method.
10. Bar with variable cross-section, height linear ramping, determination of deflection coefficients (analytic solution, numerical integration)
11. Solution of spatial frames solved by general deflection method.
12. Calculation model for simplified deflection method in scalar form.
13. End moments, internal forces. Joint and storey equation.

Aims

Introduction to the stiffness Method for analysis of the statically indeterminate of planar bar systems. Simplification to the stiffness method and deflection method for analysis of planar bar systems, plane trusses. Influence of the beam haunch.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

• Programme BPC-SI Bachelor's

specialization S , 3. year of study, winter semester, 4 credits, compulsory

• Programme BPA-SI Bachelor's, 3. year of study, winter semester, 4 credits, compulsory
• Programme BKC-SI Bachelor's, 3. year of study, winter semester, 4 credits, compulsory

• Programme BPC-SI Bachelor's

specialization K , 3. year of study, winter semester, 4 credits, compulsory

#### Type of course unit

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise

26 hours, compulsory

Teacher / Lecturer