Course detail
Physical Optics
FIT-FYOAcad. year: 2020/2021
Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography, holography code, reconstruction of optic field. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.
Supervisor
Department
Learning outcomes of the course unit
The students will learn the basic principles of the physical optics needed for computer graphics. They will extend their general knowledge of optics and get acquainted with the modern optics. They will also learn how to apply the gathered knowledge on real tasks. Finally, they will get acquainted with further physics principles important for computer graphics.
Prerequisites
Basic knowledge of physics.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Schroeder, G.: Technická optika, SNTL, Praha, CZ, 1981 (in Czech)
Hecht, E., Zajac, A.: Optics, Addison-Wesley, Reading, UK, 1977, ISBN 0-201-02835-2
Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, Willey, New York, USA, 1997, ISBN 0-471-10559-7
Malý, P.: Optika (2ed), Karolinum, 2013, ISBN 978-80-246-2246-0
Planned learning activities and teaching methods
Not applicable.
Assesment methods and criteria linked to learning outcomes
- Mid-term exam - up to 10 points
- Project - up to 30 points
- Written exam - up to 60 points
Language of instruction
Czech, English
Work placements
Not applicable.
Aims
To learn the basic principles of the physical optics needed for computer graphics. Extend the general knowledge of optics and get acquainted with the modern optics. To learn how to apply the gathered knowledge on real tasks. To get acquainted with further physics principles important for computer graphics.
Classification of course in study plans
- Programme IT-MGR-2 Master's
branch MBI , any year of study, summer semester, 5 credits, elective
branch MPV , any year of study, summer semester, 5 credits, elective
branch MSK , any year of study, summer semester, 5 credits, elective
branch MIS , any year of study, summer semester, 5 credits, elective
branch MBS , any year of study, summer semester, 5 credits, elective
branch MIN , any year of study, summer semester, 5 credits, elective
branch MMM , any year of study, summer semester, 5 credits, elective - Programme MITAI Master's
specialization NADE , any year of study, summer semester, 5 credits, elective
specialization NBIO , any year of study, summer semester, 5 credits, elective
specialization NNET , any year of study, summer semester, 5 credits, elective
specialization NVIZ , any year of study, summer semester, 5 credits, elective
specialization NCPS , any year of study, summer semester, 5 credits, elective
specialization NSEC , any year of study, summer semester, 5 credits, elective
specialization NEMB , any year of study, summer semester, 5 credits, elective
specialization NHPC , any year of study, summer semester, 5 credits, elective
specialization NISD , any year of study, summer semester, 5 credits, elective
specialization NISY , any year of study, summer semester, 5 credits, elective
specialization NMAL , any year of study, summer semester, 5 credits, elective
specialization NMAT , any year of study, summer semester, 5 credits, elective
specialization NSEN , any year of study, summer semester, 5 credits, elective
specialization NVER , any year of study, summer semester, 5 credits, elective
specialization NSPE , any year of study, summer semester, 5 credits, elective - Programme IT-MGR-2 Master's
branch MGM , 1. year of study, summer semester, 5 credits, compulsory
- Programme MITAI Master's
specialization NGRI , 1. year of study, summer semester, 5 credits, compulsory
specialization NIDE , 1. year of study, summer semester, 5 credits, compulsory
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Syllabus
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Project
13 hours, compulsory
Teacher / Lecturer
Syllabus
- Individually assigned projects; it is expected that the "programming part" of the assignment will be consulted and evaluated in other course (more computer science oriented).