Course detail
Microprocessor Technics for Drives
FEKT-BPC-MTPAcad. year: 2020/2021
The course familiarizes students with applications of microprocessors used for measurements and process control. They are expected to have basic knowledge of digital circuits and elementary level of English. The students will widen their knowledge of digital circuits and their use. They will work individually with development systems for the Freescale DSP56F800E microprocessors, develop programs in the C language and uses measurement instrumentation for microprocessor circuits analysis. The course is focused on applications of the one-chip microcontrollers, measurement of electric and nonelectric quantities and digital control.
Supervisor
Learning outcomes of the course unit
Student which passes the course is able
- explain microprocessor principles at the level necessary for programing in assembler
- explain related terms: register, memory, program, CPU, program counter, linker, compiler, debugger, interrupt, interrupt service, interrupt vector, interrupt flag, periphery, stack, stack pointer, status register, conditional jump
- explain principles of peripheries for electric drives control (GPIO, PWM, ADC, Timer, SPI, SCI)
- use C language in microprocessors
- use assembler in microprocessors
- use development tools for application creation and debugging
- use and set peripheries for analogue measurement, pulse frequency measurement, generating PWM, data transfer using serial lines
Prerequisites
Student which entre the course should be able
- explain logic circuits principles
- design algorithms and realize them in arbitrary programing language
- read English texts for development tools user’s manuals study
Regarding course orientation on electric drives control student should be able
describe principle and mathematical model of DC motor
- explain principle of transistor 4Q DC/DC innverer
- Explain operation of DC drive in individual operating quadrants
- Explain cascade control of DC drive
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Klíma B., Stupka R.;Mikroprocesorová technika v elektrických pohonech; Elektronický text FEKT VUT v Brně (CS)
Freescale; 56F802x and 56F803x Peripheral Reference Manual (EN)
Freescale Semiconductor; DSP56800E 16-Bit DSP Core Reference Manual, www.freescale.com (EN)
Freescale Semiconductor; 56F8000 16-bit Digital Signal Controllers Data Sheet, www.freescale.com (EN)
Freescale Semiconductor; DSP56800E_Quick_Start_Users_Manual, www.freescale.com (EN)
Planned learning activities and teaching methods
Techning methods include lectures and computer laboratories. Students do individual projects in computer laboratories
Assesment methods and criteria linked to learning outcomes
Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every. Evaluated are particular projects in laboratories and writen test as exam.
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
Lectures:
1. Introduction, basic terms, microprocesor principle
2. C program in sigle chip microprocesor, compiler, linker.
3. Number systems, data types, bitwise logic operations, logic operation on expresions.
4. Stack, subroutine calling, local variables vs. globale variables.
5. Control structures in C, its relation to assembler, status register
6. Interrupts, interrupt vector, interrupt sources, interrupt service routine
7. Fractional arithmetics, programing functions for fractional arithmetics
8. Peripherials - GPIO, Timer
9. Introduction into microprocessor control of electric drives. Peripherial - PWM
10. Peripherial A/D converter
11. A/D converter - PWM synchronization. Electric quantities sensing.
12. Speed and position sensors in electric drives. Processing of position sensors signals
13. Serial interfaces SPI, SCI. Simple Huma Machine Interfaces - keypads, character LCD displays
Laboratory exercises:
1. Laboratory workplace, development tools, measuremet instrumentation. Simple C program
2. Development environment, debugging, simple expample with GPIO, peripherial drivers usage.
3. Data in memory, data types, bit operations, data fields, structures, constant variables in FLASH - examples.
4. Subroutine calling, writing of assembler function
5. Control structures in assembler function
6. Timer, its interrupt, LED blinking
7. Subroutine in fractional arithmetics
8. GPIO input, output mode, interrupt
9. PWM generator settings, PWM output signal analysis
10. A/D converter, conversion of signal from a generator
11. PWM, Timer, and A/D converter in synchronization mode
12. Pulse signal processring by counter
13. Simple SPI, SCI two node communication
Aims
Basic principles of digital control by microcontrollers, basic knowledges of programming.
Specification of controlled education, way of implementation and compensation for absences
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year. Laboratories are compulsory.
Classification of course in study plans
- Programme BPC-AUD Bachelor's
specialization AUDB-TECH , any year of study, summer semester, 6 credits, elective
- Programme BPC-AMT Bachelor's, any year of study, summer semester, 6 credits, elective
- Programme BPC-EKT Bachelor's, any year of study, summer semester, 6 credits, elective
- Programme BPC-SEE Bachelor's, any year of study, summer semester, 6 credits, elective
- Programme BPC-TLI Bachelor's, any year of study, summer semester, 6 credits, elective
- Programme BPC-SEE Bachelor's, 3. year of study, summer semester, 6 credits, compulsory-optional
Type of course unit
eLearning
eLearning: currently opened course