Course detail

Binders 1 - Theoretical Principles of the Structure of Silicate (M)

FAST-BJ051Acad. year: 2019/2020

Concise principles of thermodynamics, the first and second law of thermodynamics, heat of formation, chemical equilibrium, Guldberg-Waag law, system out-of-equilibrium, reaction isotherm, State behaviour of liquids, skin effects, cohesive pressure, transport phenomena in liquids, Phase equilibria, one component system, Gibbs law, two components system. Heterogeneous one-, two-, and more components system, solubility of gases in liquids. Solid phase-gas system, solid phase - liquid phase, ternary systems. Electrochemistry, Faraday’s laws, molar conductivity of weak and strong electrolytes, Wheatstone bridge, dissociation and hydrolysis, ionic product of water, galvanic cells. Disperse systems, classification, basic physical properties, coagulation, zeta potential. Reaction kinetics, order and molecularity of reaction, reactions of 1st, 2nd and higher orders, catalysts.
The structure of silicates, Pauling’s principles, basic structural arrangement. Clay minerals, structural arrangement, classification, water bound in clay minerals. Structure and properties of silicate melts, crystallization of melts, glass structures. Heterogeneous equilibria in silicate systems, solid state reactions.

Department

Institute of Technology of Building Materials and Components (THD)

Learning outcomes of the course unit

The student would manage the goal of the subject by acquiring knowledge on theoretical and technological backgrounds for the production of inorganic construction binding material, namely chemistry and technology of plastering, lime burning and cement industry.

Prerequisites

Physics, chemistry, building materials.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1.Chemical equilibria, the Guldberg-Waag Law, systems outside of equilibrium, reaction isotherm.
2.State behaviour of liquids, surface effects, cohesion pressure, transport processes in liquids.
3.Phase equilibria, one component system, Gibbs Law of phases, system with two components.
4.Heterogeneous one-, two- and more-components systems, solubility of gases in liquids.
5.The systems: solid phase-gas, solid phase-liquid phase, ternary systems.
6.Electrochemistry, Faradays Laws, molar conductivity of weak and strong electrolytes, the Wheatstone´s bridge, dissociation and hydrolysis, ionic product of water, galvanic elements.
7.Disperse systems, division, basic physical properties, coagulation, zeta-potential.
8.Reaction kinetics, order and molecularity of reaction, reactions of 1st, 2nd, and higher orders, catalysts.
9.Structure of silicates, Pauling´s principles, basic structural arrangement.
10.Clay minerals, structural arrangement. Classification of clay minerals, water bond in clay minerals.
11.Structure and the properties of silicate melt. Melt crystallisation, the structure of glass.Heterogeneous equilibria in silicate systems, reactions in solid state.

Aims

Theoretical and Technological Fundamentals of Inorganic Building Binders, namely the chemistry and technology of plaster, lime and cement manufacture.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme B-P-C-SI (N) Bachelor's

    branch VS , 2. year of study, summer semester, 4 credits, optional

  • Programme B-K-C-SI (N) Bachelor's

    branch VS , 2. year of study, summer semester, 4 credits, optional

  • Programme B-P-E-SI (N) Bachelor's

    branch VS , 2. year of study, summer semester, 4 credits, optional

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

eLearning