Course detail

Applied Physics (V)

FAST-CB054Acad. year: 2019/2020

The structure of atoms and molecules
The basic of the statistics physics.
Heat, temperature and heat capacity at particle level.
Equipartition theorem
The characteristics of gases - air and water vapour
Temperature, pressure and transitions between liquid and gas.
Practical consequences of latent heat (heat for air damping, heat engines, condensation burner
The flow, the equilibrium and non-equilibrium processes
The principles of thermodynamics in liquids
The heat transfer in liquids, diffusion
Sun radiation, global view of the processes in atmosphere

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Physics (FYZ)

Learning outcomes of the course unit

The basics of physical substances (including liquids) and their structures, the flow of liquids. Basic physical skills for the specialization of water management and water structures.

Prerequisites

The knowledge of the mathematics and physics in the range of the sub-degree courses.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1. Definition of basic physical quantities, SI system, definition of temperature, equipartition theorem, inner energy
2. Statistical physics, state equation, practical results
3. Properties of air, water vapour and atmosphere
4. The mass, momentum and energy balance: momentum in fluids, energy in fluids (external and internal), hydraulic pressure, Pascal low, Archimedes low.
5. The flow of fluids: the stationary flow of the viscous incompressible fluid through the tube, the velocity distribution along the cross section of the tube, Hagen-Poisseli’s law.
6. Temperature, pressure and phase transitions, latent heat, physics of low temperatures and pressures
7. Particle physics and heat capacity of gases at constant pressure or volume
8. Basics of thermodynamics, processes in gases, heat engines, Carnot cycle
9. Practical outcomes of derived properties (engines, heat pumps, air conditioning, thermoelectric generators, themocouples, Peltier cells, condensation burner, drying or damping of air
10. Electromagnetic radiation, Plancks law, Sun radiation, spectral properties of atmosphere
11. Black body radiation, emissivity, transmittance, absorptivity, solar collectors and their principle and efficiency
12. The energy point of view - transforms of energy, energy accumulations, energy density, power density
13. Sun, basics of meteorology, atmosphere composition, greenhouse effect

Work placements

Not applicable.

Aims

To enlarge the knowledge of physics in the area of structure, matters, fluids and flow for the students of the water management and water structures focus.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-P-E-SI (N) Master's

    branch V , 1. year of study, summer semester, elective

  • Programme N-K-C-SI (N) Master's

    branch V , 1. year of study, summer semester, elective

  • Programme N-P-C-SI (N) Master's

    branch V , 1. year of study, summer semester, elective

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Definition of basic physical quantities, SI system, definition of temperature, equipartition theorem, inner energy 2. Statistical physics, state equation, practical results 3. Properties of air, water vapour and atmosphere 4. The mass, momentum and energy balance: momentum in fluids, energy in fluids (external and internal), hydraulic pressure, Pascal low, Archimedes low. 5. The flow of fluids: the stationary flow of the viscous incompressible fluid through the tube, the velocity distribution along the cross section of the tube, Hagen-Poisseli’s law. 6. Temperature, pressure and phase transitions, latent heat, physics of low temperatures and pressures 7. Particle physics and heat capacity of gases at constant pressure or volume 8. Basics of thermodynamics, processes in gases, heat engines, Carnot cycle 9. Practical outcomes of derived properties (engines, heat pumps, air conditioning, thermoelectric generators, themocouples, Peltier cells, condensation burner, drying or damping of air 10. Electromagnetic radiation, Plancks law, Sun radiation, spectral properties of atmosphere 11. Black body radiation, emissivity, transmittance, absorptivity, solar collectors and their principle and efficiency 12. The energy point of view - transforms of energy, energy accumulations, energy density, power density 13. Sun, basics of meteorology, atmosphere composition, greenhouse effect

Exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

Week 1: instructions - introduction to methods of measurement, calculation methods, roles for an entire semester (cyclic tasks for pairs of students familiar with the safety regulations for work on electrical installations in student labs) Week 2 first laboratory measurement tasks according to the schedule Week 3 following measurements according to schedule and commit the previous measurements and calculated examples Week 4 following measurements according to schedule and commit the previous measurements and calculated examples Week 5 following measurements according to schedule and commit the previous measurements and calculated examples Week 6 following measurements according to schedule and commit the previous measurements and calculated examples Week 7 consultation, corrections, measurement of errorneous exercises Week 8 following measurements according to schedule and commit the previous measurements and calculated examples Week 9 following measurements according to schedule and commit the previous measurements and calculated examples Week 10 following measurements according to schedule and commit the previous measurements and calculated examples Week 11 following measurements according to schedule and commit the previous measurements and calculated examples Week 12 following measurements according to schedule and commit the previous measurements and calculated examples Week 13 exam and submission of the minutes of the previous measurements, credit Laboratory exercises: Frequency dependence of sound absorption coefficient Frequency analysis of sound Frequency analysis of sound reverberation time in the room, Determination of electrical resistance by direct method Determination of electrical capacity by direct method Determination of inductance and quality of coil by direct method VA characteristics of semiconductor diodes Determination of transistor characteristics Determination of elementary charge from transistor characteristics Determination of specific heat capacity of solids calorimeter Determination of the coefficient of thermal expansion Determination of thermal conductivity bricks transient method Determination of Poisson adiabatic constant of air Determination of calibration curve thermocouple Determination of calibration curve thermistor Determination of calibration curve thermo-diode Determination of the coefficient of heat pump The dependence of the coefficient of the absorption of light in translucent materials versus the wavelength of light Determination of the total luminous flux of the point light source Acoustic emission during static stress of concrete sample Determination of roughness of fracture surfaces by means of the confocal microscope