Course detail

Geographical Information Systems

FAST-TE01Acad. year: 2019/2020

Geographical information system (GIS),its objective, function and structure. relation between GISand CAD. geographic object, information and database systems, modern methods of works with data (genetic algorithm. neural networks), Various forms of data, their relations (homeomorfismus), Basic characteristics of geographical data, topology in GIS. SDI, INSPIRE, Digital terrain model, organization of DTM data in GIS. Standards,"openGIS", spatial analysis of data, current trends in GIS


Institute of Geodesy (GED)

Learning outcomes of the course unit

Basis knowledge needed for GIS design.
Ability to create a GIS project in Geomedia Intergraph and Arc/Info Systems.


Fundamental knowledge of information technology.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Smutný, J.: Geografické informační systémy. VUT, FAST, Brno, 1998. (CS)
Bartoněk, D.: Územní informační systémy. M1, M2. Elektronické studijní opory,. VUT, FAST, Brno, 2010. (CS)
Bill, R.- Fritsch, D.: Grundlagen der Geo-Informationssysteme. Herbert Wichmann Verlag, 1991. (DE)
Longley, P. .A. et all.: Geographic Information – Systems and Science. Wiley Europe, 2001. (EN)

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction, definition, interdisciplinary relationships, geographic object, homeomorphism
2. Information systems: types, methods of design, information systems in public administration
3. Database systems: relational algebra, SQL language, spatial indexes, spatial queries, data mining (cluster analysis, artificial neural networks, genetic algorithms)
4. Topology (mathematical, pragmatic - Standard DIGEST)
5. Data models in GIS (vector, raster, matrix)
6. Sources of data in GIS, web mapping services
7. SDI (Spatial Data Infrastructure for), the INSPIRE Directive
8. Digital elevation model (raster, vector, TIN)
9. Input data, metadata, data accuracy and quality - standards
10. Map algebra: a model, operators, functions, typical tasks
11. Spatial analysis: history, purpose, types (measurement and classification functions, overlay function in the neighborhood, connecting function)
12. Current trends and developments of GIS


Understanding of information systems and databases with connection to spatial identification. Principles of work with ArcGIS and Geomedia Intergraph.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme N-P-C-A Master's

    branch ARS , 2. year of study, winter semester, 3 credits, elective
    branch ARS , 2. year of study, winter semester, 3 credits, compulsory

Type of course unit



13 hours, optionally

Teacher / Lecturer


26 hours, compulsory

Teacher / Lecturer