Course detail

Cyber-Physical Systems Design (in English)

FIT-CPSaAcad. year: 2019/2020

The Cyber-Physical Systems combine cybernetic (computation and/or communication) and physical properties (motion or other physical processes). The application of such systems covers automotive, flight control and defense systems, critical infrastructure control (power grids, water resources, communication systems), energy management and storage, transportation control and safety, communication systems, robotics and distributed robotics (telemedicine), medical technologies, systems for assisted living, consumer electronics, toys and other smart devices. These devices interact in physical world through computer controlled algorithms. Design of the CPS control algorithms is a challenging discipline considering their tight coupling to physical systems behavior. An important design aspect to be considered is the correctness of the control algorithms itself, as the execution of critical control tasks depends on their correct function, as is the case in aircraft and/or car collision avoidance in automatic or autonomous modes, respectively. The aim of the course is to find an answer to an important social question, how to responsibly design critical Cyber-Physical Systems on whose flawless function depend human lives.

Learning outcomes of the course unit

A successful graduate will acquire the understanding of basic CPS principles and knowledge in the design and analysis of computer systems integrated into real physical processes. The acquired knowledge will allow for a qualified insight into the system abstraction and architecture, and will simultaneously support the mastering of model and control system designs while using adequate safety specifications to fulfill desired CPS performance targets. The acquired knowledge and skills will support verification of adequate CPS models while taking into account the expected effects of the environment on their function.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Sang C. Suh, U. John Tanik, et al.: Applied Cyber-Physical Systems, Springer, 2013, ISBN-10: 1461473357.
Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic: Cyber-Physical Systems: From Theory to Practice, CRC Press, 2015, ISBN 9781482263329.
Rajeev Alur: Principles of Cyber-Physical Systems, The MIT Press, 2015, ISBN-10: 0262029111.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

  • Mid-semester test for 20 points.
  • Completion of individually assigned project.

Language of instruction

English

Work placements

Not applicable.

Aims

The aim of the course is to stimulate an understanding of the design and analysis of Cyber-Physical Systems (CPS), which integrate computer systems into physical processes. Simultaneously, the course also addresses the synthesis of highly reliable real-time systems. The design and programming of control systems in laboratory conditions is an integral part of the course.

Classification of course in study plans

  • Programme IT-MGR-2 Master's

    branch MGMe , any year of study, summer semester, 5 credits, optional

  • Programme MITAI Master's

    specialization NADE , any year of study, summer semester, 5 credits, optional
    specialization NBIO , any year of study, summer semester, 5 credits, optional
    specialization NGRI , any year of study, summer semester, 5 credits, optional
    specialization NNET , any year of study, summer semester, 5 credits, optional
    specialization NVIZ , any year of study, summer semester, 5 credits, optional
    specialization NCPS , any year of study, summer semester, 5 credits, compulsory
    specialization NSEC , any year of study, summer semester, 5 credits, optional
    specialization NEMB , any year of study, summer semester, 5 credits, optional
    specialization NHPC , any year of study, summer semester, 5 credits, optional
    specialization NISD , any year of study, summer semester, 5 credits, optional
    specialization NIDE , any year of study, summer semester, 5 credits, optional
    specialization NISY , any year of study, summer semester, 5 credits, optional
    specialization NMAL , any year of study, summer semester, 5 credits, optional
    specialization NMAT , any year of study, summer semester, 5 credits, optional
    specialization NSEN , any year of study, summer semester, 5 credits, optional
    specialization NVER , any year of study, summer semester, 5 credits, optional
    specialization NSPE , any year of study, summer semester, 5 credits, optional

  • Programme IT-MGR-1H Master's

    branch MGH , any year of study, summer semester, 5 credits, recommended

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

  1. Introduction to Cyber-physical systems.
  2. System identification and model parameter estimation.
  3. Physical system models.
  4. Simulation of physical models and introduction to cybernetic systems.
  5. Coupled Cyberp-Physical System models.
  6. Stability and control basics.
  7. System analysis and control in continuous time.
  8. System analysis and control in discrete time.
  9. Robust control.
  10. Drone control strategies.
  11. Autonomy of unmanned systems.
  12. Risk analysis of highly integrated systems.
  13. Verification and testing.

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

  1. Introduction to Matlab/Simulink and simulation of dynamic systems.
  2. System identification, model parameter estimation.
  3. Simulation and stability analysis of physical models.
  4. CPS control algorithms design.
  5. Control algorithm implementation in simulation environment.
  6. System testing and verification.

Project

13 hours, compulsory

Teacher / Lecturer

Syllabus

  • Student will individually design a CPS.
  • Student will perform an analysis of a specific CPS.
  • Student will design and implement a CPS control system.

eLearning