Course detail
Selected Topics in Renewable Energy Sources and Energy Storage
FEKT-BPA-OZUAcad. year: 2019/2020
The course deals with current problems in the field of renewable energy sources, focusing on practical information and experience with various sources of electricity, such as wind, solar, hydro, geothermal and even biomass energy. A considerable amount of attention is focused on the possibility of storing electrical energy, introducing different types of accumulation, working principles and a comparison between the pros and cons. The course also includes information on practical use in hybrid electric vehicles, island systems and hydrogen economy.
During laboratory tests the students can obtain practical information based on testing and simulating the studied topics.
Supervisor
Nabízen zahradničním studentům
Všech fakult
Learning outcomes of the course unit
Students will get basic theoretical and practical knowledge from the fields of renewable energy sources and energy storage. With this knowledge, they will be able to competently analyze and design solutions in these fields. Students will be able to design a simple autonomous photovoltaic system, project appropriate positions for wind and hydroelectric power plants, explain the function of a heat pump or design an appropriate energy storage system. Students will be theoretically prepared for following courses dealing with renewable and alternative energy sources.
Prerequisites
The course is designed as introduction to the topic of renewable energy sources and energy storage. There is no need to any other prerequisites, knowledge obtained during secondary (middle) school is sufficient.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
BOYLE, Godfrey. Renewable energy: power for a sustainable future. 3rd ed. Oxford: Milton Keynes: Oxford University Press ; Open University, 2012, xv, 566 s. : barev. il. ISBN 978-0-19-954533-9. (EN)
KREITH, Frank a D. Yogi GOSWAMI. Handbook of energy efficiency and renewable energy. Boca Raton: CRC Press, 2007, 1 sv. (různé stránkování) : il. ISBN 978-0-8493-1730-9. (EN)
KALTSCHMITT, Martin, Nickolas J THEMELIS, Lucien Y BRONICKI, Lennart SÖDER a Luis A VEGA. Renewable energy systems. Volume 1. New York: Springer, 2013, xxvi, 664 stran : ilustrace (většinou barevné). ISBN 978-1-4614-5819-7. (EN)
HAZEN, Mark E. Alternative energy: an introduction to alternative & renewable energy sources. Indianapolis: Prompt Publications, 1996, xii, 285 s. : obr., čb. fot. ISBN 0-7906-1079-5. (EN)
The future for Renewable energy. London: James & James, 1996, 209 s. ISBN 1-873936-70-2. (EN)
LETCHER, Trevor M. Storing Energy: with Special Reference to Renewable Energy Sources. Elsevier, 2016. ISBN 0128034408. (EN)
PRIYA, Shashank a D. J. INMAN. Energy harvesting technologies. New York: Springer, 2009, xx, 517 s. : il. ISBN 978-0-387-76463-4. (EN)
Planned learning activities and teaching methods
Teaching methods depend on the way that given course is regulated, and they are described in Article 7 of the study and examination regulations of BUT.
Assesment methods and criteria linked to learning outcomes
The theoretical test consisting of knowledge from laboratory exercises is awarded 10 points maximum. Students can get another 30 points maximum for all correctly and fully elaborated laboratory tasks. Minimal extent of elaborated laboratory tasks and other conditions needed for successful completion of the course are stated in the announcement issued by the supervisor of the course each year. The final exam is awarded 60 points maximum. The final exam will be held distant (online) way via e-learning.
Language of instruction
English
Work placements
Not applicable.
Course curriculum
Outline of lectures
1. Wind energy
2. Solar energy
3. Water energy
4. Earth's core energy
5. Biomass energy
6. Energy storages
7. Combined hybrid nitrogen system
8. Electric energy in RAPS applications
9. Hybrid electric vehicles
10. Energy storage with help of flywheel and compressed air
11. Energy storage with help of supercapacitors and SMES systems
12. Utilization of low potential thermal residual energy
Outline of laboratory exercises
1. Introduction into laboratory exercises
2. The frequency response and spectrum of PV module
3. VA characteristics of PV module at different intensities of light
4. Accumulation of electric energy using flywheel
5. Accumulation of thermal energy in the form of sensible and latent heat
6. Combinations and electrical efficiency of supercapacitors, supercapacitors energy utilization
7. Small water wheel generator
8. Power efficiency of small wind turbine
9. Use of the thermoelectric phenomenon for energy acquisition
10. Verification od Beketov's metal series
11. Energy of compressed gas
12. Heat pump systems
Aims
The aim of the course is to acquaint students with basics of renewable energy sources and energy storage, the course will provide necessary knowledge and infromation for relating advance course. The students will be introduced into theoretical basics utilizing the energy of wind, sun, water and its conversion to electric energy, generally energy harvesting. After the course the students will obtaind knowlage about energy harvesting and storage with help of electrochemical power sources.
Specification of controlled education, way of implementation and compensation for absences
The content, forms and conditions for course passing will be specified by rules and regulations which are released by the lecturer responsible for the course and keep updated for every academic year.
Classification of course in study plans
- Programme BPC-MET Bachelor's, any year of study, summer semester, 5 credits, elective
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Laboratory exercise
26 hours, compulsory
Teacher / Lecturer
eLearning
eLearning: currently opened course