Course detail

Imaging Systems with Ionizeing Radiation

FEKT-MPA-ZIZAcad. year: 2020/2021

Not applicable.

Learning outcomes of the course unit

Not applicable.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

JERROLD T. BUSHBERG . Essential physics of medical imaging. 3. ed., Internat. ed. S.l.: Lippincott Williams And W, 2011. ISBN 9781451118100. (CS)
BRONZINO, Joseph D. The biomedical engineering handbook. Medical Devices and Systems. 3rd ed. Boca Raton: CRC/Taylor & Francis, 2006. ISBN 0849321220. (CS)
CHERRY, Simon R, James A SORENSON a Michael E PHELPS. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier/Saunders, c2012. ISBN 978-1-4160-5198-5. (CS)
RUSSO, Paolo, [2017]. Handbook of X-ray imaging: physics and technology. Boca Raton. ISBN 14-987-4152-5. (CS)

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. History of Medical Imaging - first look to different imagin modalities, basic physical principles related to development of imaging systems, quantitative and qualitative parameters of medical imaging, image quality assessment.
2. Physics of ionizing ray - electromagentic ray, atom and its models, electron transitions, characteristic radiation and Auger electron emission, nuclear stability, radioactivity, interactions of radiation with matter (all kinds), attenuation of radiation
3. X-Ray Systems - geometric acquisition, sumated imaging, x-ray tube - basic principle, characteristic radiation, Bremsstrahlung, types of x-ray tubes, materials for anodes, X-Ray generators, filtration and collimation of the radiation, primary collimator.
4. X-Ray Systems - scattered radiation, Bucky grid, anti-scatter grid, detection of X-Ray - photographic film, computed digital radiography (memory foils), flat panels with direct and indirect detection of radiation, specifications for fluoroscopy - image intensifier, different acquistion parameters.
5. X-Ray Systems - nontypical applications - fluoroscopy, using of contrast agents, mammography, dental X-Ray, bone densitometry, dual energy acquisition, 3D digital tomosynthesis, image quality of X-Ray Systems
6. CT systems - tommographic systems, basic principles - parallel projections, image reconstruction, algebraic reconstruction, simple back projection, filtered back projection, iterative reconstructions, fan beam projections, helical data interpolation, multi-layer detectors interpolations, definition of CT number
7. CT systems - historical overview of CT systems and generations - first, sencond, third, slip ring technology, fourth and fifth generation, helical systems, sub-sekund systems, multi-layer systems. X-Ray tubes for CT systems - differences to standard X-Ray tubes.
8. CT systems - detection of radiation in CT - gas detectors, scintilators, technologies for production of multi-layer detectors. Acquisition parameters - anode voltage, anode current, helical pitch, binning. Technical perspective of CT system components - gantry, patient table and others. Image quality of CT systems.
9. Nuclear Medicine Imaging - radionuclides as a source of ionizing radiation, gamma radiation, sumation imaging - planar gammagraphy, Anger camera, semicondutor´s material and detection by semiconductiors
10. Nuclear Medicine Imaging - tomographic systems - single photon emission computed tomography (SPECT), positron emission tomography (PET) - definitions, projections, set of projections, image reconstructions, coincidence, time-of-fligh detection and reconstructions, typical radiopharmaceuticals (technecium 99m, FDG, etc).
11. Hybrid Medical Imaging - construction, combination of selected imaging modalities - advantages, disadvantages, correction of attenuation, SPECT-CT, PET-CT, PET-MRI, unusual combinations for preclinical research
12. Radiation biology - dose, negative effects of ionizing radiation to tissue, limitations of radiation dose, simulations of radiation protection

Aims

Not applicable.

Classification of course in study plans

  • Programme MPA-BIO Master's, 2. year of study, winter semester, 5 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise in computer lab

13 hours, compulsory

Teacher / Lecturer

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer