Course detail
Vibration and Noise of Vehicles
FSI-QDZAcad. year: 2019/2020
The subject should serve as an introduction of the most important problems of noise, vibration and harshness applied on motored vehicles. Current computational and experimental methods used in the development of motor vehicles are presented to the students. The emphasis is laid upon the mathematical and physical foundations of calculation models and the respective software as well as the verification of results of the computer modelling by way of appropriate experimental methods. Selected examples of application of the subject matter in technical practice are also presented.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
- compulsory co-requisite
Tractors
Basic literature
DE JALON, J., G. a E. BAYO. Kinematics and Dynamic Simulations of Multibody Systems The Real-Time Chalange. New York: Springer-Verlag, 1994. ISBN 978-1461276012. (EN)
MIŠUN, V. Vibrace a hluk. 2. vyd. Brno: Akademické nakladatelství CERM, 2005, 177 s. Učební texty vysokých škol (Vysoké učení technické v Brně). ISBN 80-214-3060-5. (CS)
NORTON, M. P. and D. G. Karczub. Fundamentals of Noise and Vibration Analysis for Engineers. Cambridge University Press, second edition, 2004. ISBN 978-0-521-49561-6. (EN)
NOVÝ R., KUČERA M. Snižování hluku a vibrací. Praha: Vydavatelství ČVUT Praha, 2009.
SMETANA, C. et al. Hluk a vibrace: měření a hodnocení. Praha: Sdělovací technika, 1998. ISBN 80-901936-2-5. (CS)
Recommended reading
NGUYEN-SCHÄFER, Hung. Aero and Vibroacoustics of Automotive Turbochargers. 1. Stuttgart, Germany: 3, 2013. ISBN 978-3-642-35069-6. (EN)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. The vibration of the system with one degree of freedom.
3. Vibration of non-linear systems and systems with multiple degrees of freedom.
4. Fundamentals of finite element method and commercial systems.
5. Application of the finite element method to dynamic tasks.
6. Description of sound sources and sound propagation through acoustic domain.
7. Processing of vibroacoustic signals.
8. Experimental methods for vibration determination.
9. Experimental methods for noise determination.
10. Vibration and noise sources on the vehicle I.
11. Vibration and noise sources on the vehicle II.
12. Vibration and noise sources on the vehicle III.
13. Solution applications of vibration and noise issues.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Application of finite element method – modal analysis.
3. Application of finite element method – harmonic analysis.
4. Application of finite element method – analysis of acoustic system.
5. Calculation of hybrid powertrain excitation.
6. Experimental methods for vibration and noise determination.
Elearning