Course detail

Radars and Navigation Systems

FEKT-GRARAcad. year: 2019/2020

Students will be introduced to the definition of the radiolocation, and elementary types of radars and their characteristics. Characteristics of targets, radar equation, and radiation patterns of radar antennas are studied in the next part of course. Students familiarize with effects of the electromagnetic wave propagation on the radar measurement, methods of space scanning, and radar signal processing. Technology of pulse and continuous radars and their block diagrams and characteristics will be described in the follow part. Students will be introduced to applications of modern radar systems - surveillance radars, over the horizon radars, collision avoidance radars, and ground-penetrating radars in the conclusion of training concerning on radar systems. Fundamentals of navigation theory, instruments and calculations are lectured in the beginning of navigation theory part of course. Students will be initiated to AM, PM, FM and IM navigation systems. The air navigation services of a long distance flight, instrument landing, and VOR, ILS, MLS, and DME systems are indivisible part of course. The last part of course is devoted to global navigation satellite systems - GPS-NAVSTAR, GALILEO, GLONASS, BEIDOU, QZSS. The application satellite navigation systems and architectures of GNSS receivers will be presented in the final part of course. Course is supplemented by laboratory a computer practices and field trip to ATC department in Brno Airport or to radar companies.

Learning outcomes of the course unit

The graduate is able (1) to analyze a solution of radar systems including radar signal processing, (2) to analyze a solution of navigation systems including navigation signal processing, (3) and to apply GNSS in real systems.


The subject knowledge on the Bachelor degree level is requested, also knowledge of radiofrequency techniques, microwaves, and advanced signal processing is recommended.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

SKOLNIK, M.I. Introduction to Radar Systems. 3rd ed. McGraw-Hill, 2001. (EN)
KAPLAN, E.D., HEGARTY, C.J. Understanding GPS Principles and Applications. 2nd ed. Artech House, 2006. (EN)
RICHARDS, M.A. Fundamentals of Radar Signal Processing. 1st ed. McGraw-Hill, 2005. (EN)

Planned learning activities and teaching methods

Teachning methods include lectures, computer laboratories and practical laboratories. All learning matters are published in open www pages.

Assesment methods and criteria linked to learning outcomes

Students can obtain up to 20 points for the activity in computer practices, 20 points for the activity in laboratory practices, and 60 points (maximally) for final oral exam.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Definition of the radiolocation, radar classification and their applications, radar parameters, radar frequencies, primary radar block diagram.
2. Detection of radar signal in noise, detection probability, target characteristics, radar cross section, effects of clutter.
3. Radar equation, propagation of radar waves, radar antennas, beamforming techniques, space scanning.
4. Radar hardware, RF power sources, radar receivers, duplexers, phase shifters for antenna arrays, signal processors, displays for radars.
5. Radar signals, moving target effects, ambiguity function, moving target indication methods, synthetic aperture radars, radar information distribution.
6. Radar applications, marine radars, air surveillance radars, collision avoidance radar, over the horizon radar, radar sensors, meteorological radars, altimeters, ground-penetrating radars.
7. Passive radars, direction of arrival method, time difference of arrival method, military applications, radio astronomy, RFID systems.
8. Fundamentals of navigation theory, instruments and computing methods, maps and their projections, world geodetic systems, AM,PM, FM and IM navigation systems.
9. Air traffic control systems, instrument landing, NDB, VOR, ILS, MLS.
10. Fundamentals of global navigation satellite systems, GPS-NAVSTAR, GALILEO, GLONASS, BEIDOU, QZSS.
11. Architectures of GNSS receivers, algorithms for time and position calculation, communication interface.
12. Augmented GNSS, GNSS applications, system solutions.
13. Field trip to ATC department (Brno airport) or to RAMET Kunovice, ERA Pardubice or ELDIS Pardubice.

Laboratory exercises:
1. Multistatic CW radar, trajectory reconstruction of moving targets.
2. Secondary surveillance radar, ADS-B signal reception and processing.
3. Passive TDOA radar.
4. Radio direction finder.
5. Inertial navigation.
6. GNSS receivers.


The course is aimed to familiarize students with modern radar and navigation systems, with theory of radars, and with navigation methods based on electronic instruments.

Specification of controlled education, way of implementation and compensation for absences

Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Classification of course in study plans

  • Programme TECO-G Master's

    branch G-TEC , 2. year of study, winter semester, 4 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer