Course detail

Process Control

FEKT-MAUPAcad. year: 2019/2020

The course MAUP is designed for students of second year of graduate studies. It is the last year of university studies and course graduates of MAUP after its completion are to join the development and programming teams to be ready for design and implementation of industrial control systems. The basic pillars of this work is the specification of the electrical components of the technological process, specification of input and output signals, control system design, a price quotation for the user, creating a PLC program, the creation of programs for control and visualization (SCADA / HMI), the design of industrial communication networks and the creation of application of MES system. For these activities must be responsible person able to create a timetable. Theoretical underpinnings is the knowledge of mathematical modeling of complex technological systems, model verification, modeling and numerical aspects of functional safety (IEC 61508 standard and related)

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The student is able to
- Create demand and quotation for an automation project
- Create a project visualization of technological processes (SCADA)
- Create a mathematical model of technological unit
- Implement appropriate control algorithms
- Create an application with the modules of Manufacturing Execution System (MES)
- Create a program for batch process BATCH
- To assess the degree of risk-driven process in terms of functional safety standard IEC 61508
- Design HW / SW configuration of safe control

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teachning methods include lectures, case studies, practical laboratories and excursions in technological processes. Course is taking advantage of e-learning (Moodle) system. Students work with the system COMES, one system of an operative production control. Students have to write three project/assignment and in another three acts as a co-author during the course.

Assesment methods and criteria linked to learning outcomes

- 30 points for practice exercise (student is due to work out 5 reports and short tests)
- 70 points for examination
- The exam is in the written form
- To pass the written exam a student needs to get 35 points out of 70 possible

Course curriculum

Lectures:
1. Introduction to designing automation systems.
2. Mathematical modeling of complex technological systems
3. Selected problems of practical application controllers.
4. Identification of the characteristics of industrial equipment
5. Batch processes in system COMES Batch a COMES Modeller
6. Batch processes in system COMES Batch a COMES Modeller II
7. Manufacturing Execution Systems I
8. Manufacturing Execution Systems II
9. Industrial intelligence
10. Industry 4.0
11. Product Lifecycle Management Systems
12. Digital Factory
13. Introduction to control systems safety

Laboratory exercies:
1. Revise basic programming SIMATIC PLC (HW configuration, simple programs in STL), Measurement and processing of analog signals in PLC, including visualization
2. STL + LAD modules - mathematical model of a tank, visualisation in WinCC
3. Object model - User Data Types and Data Blocks for Valves and Motors
4. STL functions for control modules
5. Testing of previously development modules and functions, visualisation
6. + 7. Implementation of filling-up, mixing and emptying phases according to ISA-S88
8. Implementation of main module in GRAPH
9. Visualisation in InTouch
10. MES system COMES, module Historian
11. + 12. MES system COMES, module Batch, Batch configuration, scheduling, testing
13. Spare excersise

Work placements

Not applicable.

Aims

The aim of the course is to introduce students to the total issues of process automation. Students will learn the basics of design and construction work on projects of automation machinery, production lines and processes. Become familiar with the safety norms, project symbols applied for measurement and control and development procedures for the implementation of systems of measurement, control and automation.
The course provides students with computer support of design work. On the practical demonstration projects and excursions to selected technological processes students become familiar with a particular form of implementation of automation. Laboratory exercises are geared towards PC-based distributed control systems (DCS) applied to software process models. Another part of the exercise is devoted to software systems to support the engineering works.
In the examples of heat exchangers and power units, students practice the conventions of design and brand management principles and power equipment.
A big part of the lectures provide practice management experts of power plant units from the conventional up to nuclear power plants, mathematical modeling of complex technological systems, selected problems of practical application controllers, identifying the characteristics of industrial equipment, case studies of projecting power station.
Lectures terminates introduction to functional safety standard IEC 61508.

Specification of controlled education, way of implementation and compensation for absences

Laboratory exercises are compulsory, properly excused missed laboratory exercise is to be replaced after agreement with the teacher

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Industrial Ethernet. Lorentz K., Lueder A. ed., IAONA Handbook, Magdeburg, 3rd Edition, 2005, ISBN 3-00-016934
Zezulka F.: Automatizační prostředky. Skriptum PC DIR, 2000. (CS)
Zezulka F.: Prostředky průmyslové automatizace, VUTIUM, 2004 (CS)
2. PowerPoint prezentace autorů jednotlivých přednášek (CS)
Automatizace procesů, el. učební texty, Zezulka a kolektiv (CS)
Programovatelné automaty v řízení technologických procesů, Jan Pásek, 2007 (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-M1 Master's

    branch M1-KAM , 2. year of study, winter semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

Úvodní přednáška
Od projektu k aplikaci
Od projektu k aplikaci
Systémy pro řízení dávkových procesů – BATCH (dle ISA88)
Rámce, platformy
Externí přednáška – Ing. Milan Findura, Ph.D.: (Identifikace systémů 1)
Externí přednáška – Ing. Milan Findura, Ph.D.: (Identifikace systémů 2)
Systémy pro řízení výroby – MES (dle ISA95)
Systémy pro řízení výroby – dokončení, Cloudové technologie
Systémy pro správu životního cyklu výrobku, Digitální továrna
Manufacturing Intelligence, Business Intelligence
Průmysl 4.0

Laboratory exercise

39 hours, compulsory

Teacher / Lecturer

Syllabus

Laboratories:
Dostanete návrh technologie (reaktor s možností ohřevu, míchání, napouštění, vypouštění
Vyberete vhodné snímače, akční členy
Nakreslíte P&I diagram
Nakreslíte elektrické schéma
Dle pravidel popsaných v ISA-88 realizujete řídicí aplikaci v PLC
Optimalizujete regulační děj
Testovat budete s fyzikálním modelem technologie, který umí poznat, jak se k němu chováte
Připojíte řídicí program k existujícímu systému BATCH
Vytvoříte výrobní receptury a spustíte výrobu
Budete sledovat výrobní data jak exportem z aplikace, tak i přímo čtením z relační databáze
Vytvoříte závěrečnou technickou dokumentaci dle zadaných pravidel