Course detail

Mathematics

FP-BMATEAcad. year: 2019/2020

Předmět je součástí teoretického základu oboru. Cílem je zvládnout výpočty s číselnými veličinami (i s ohledem na používání výpočetní techniky), analýzu funkcí jedné a dvou proměnných (včetně aplikací v ekonomických disciplínách).

Learning outcomes of the course unit

Získané vědomosti a praktické matematické dovednosti budou důležitým východiskem pro osvojování nových poznatků v navazujících předmětech matematického charakteru, zejména budou oporou pro získávání vědomostí a rozšiřování dovedností v oborech s ekonomickým zaměřením a pro korektní využívání matematického softwaru

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

WISNIEWSKI, M.: Introductory mathematical methods in economics. First edition. McGraw-Hill, London 1991, 257s, ISBN 0-07-707407-6 (EN)
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994, 485s, ISBN 0-201-42769-9 (EN)

Planned learning activities and teaching methods

Výuka je rozdělena na přednášky a cvičení. Přednášky se zaměřují na výklad teorie s poukazem na aplikace, cvičení na praktické výpočty a aplikační úlohy.

Assesment methods and criteria linked to learning outcomes

Požadavky pro udělení zápočtu:
-aktivní účast ve cvičení, cvičení jsou povinná,
-plnění individuálních úkolů a zadávaných písemných prací,
-absolvování kontrolního testu v průběhu semestru s hodnocením alespoň "dostatečně" (E).
Udělení zápočtu je nutnou podmínkou pro konání zkoušky

Zkouška má část písemnou a ústní, přičemž těžiště zkoušky tvoří část písemná.

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. Základní matematické pojmy z matematické logiky a teorie množin a kombinatoriky, zavedeníčíselných množinN, Q, R.

2. Základní vlastnosti číselných posloupností, limita posloupnosti. Nekonečné číselné řady.

3. Definice funkce jedné proměnné,graf funkce jedné proměnné.Funkce jako způsob popisu kvantitativní stránky jevů zkoumaných jinými nematematickými vědami. Lineární a kvadratická funkce. Definice a základní vlastnosti limity funkce jedné proměnné. Základní metody vypočtu limit.

4. Spojitost funkce jedné proměnné, základní vlastností spojitých funkcí, operace s funkcemi. Vlastnosti elementárních funkcí a jejich grafy.

5. Derivace a diferenciál funkce jedné proměnné, geometrický smysl a aplikace těchto pojmů v jiných vědách. Základní vlastnosti derivace funkcí jedné proměnné. Derivace vyššího řádu.
Průběh funkce.

6. Neurčitý a určitýintegrál funkce jedné proměnné. Souvislost mezi neurčitým integrálem a derivací funkce jedné proměnné, geometrický smysl určitého integrálu. Základní metody vypočtu integrálů.

7. Obyčejné diferenciální rovnice. Příklady použiti diferenciálních rovnic v ekonomice. Metody řešení základních tipů obyčejných diferenciálních rovnic.

8. Elementy lineární algebry. Matice n-tého řádu a její determinant. Základní vlastnosti matice a determinantu. Metody vypočtu determinantu.

9. Soustavy lineárních algebraických rovnic. Věta o řešitelnosti soustavy lineárních algebraických rovnic a metoda řešeni soustavy lineárních algebraických rovnic.

10. Definice funkce více proměnných, limita a spojitost funkce více proměnných. Parciální derivace funkce dvou proměnných.

11. přednáška: Parciální derivace vyššího řádu, smíšená parciální derivace. Extrémy funkce dvou proměnných.

Aims

Cílem je zvládnout výpočty s číselnými veličinami (i s ohledem na používání výpočetní techniky), základní principy kombinatoriky a základy analýzy funkcí jedné a dvou reálné proměnné včetně aplikací v ekonomických disciplínách.

Specification of controlled education, way of implementation and compensation for absences

Účast na přednáškách není kontrolována. Účast ve cvičeních je povinná a je systematicky kontrolována. Student je povinen neúčast omluvit. Je plně v kompetenci učitele posoudit důvodnost omluvy. Formy nahrazení zameškané výuky stanoví učitel individuálně.

Classification of course in study plans

  • Programme BAK-Z Bachelor's

    branch BAK-Z , 1. year of study, winter semester, 6 credits, optional

  • Programme BAK-E Bachelor's

    branch BAK-ESBD , 1. year of study, winter semester, 6 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise

26 hours, compulsory

Teacher / Lecturer

eLearning