Course detail

Plasma Physics and Diagnostics

FEKT-MPC-FPLAcad. year: 2020/2021

This course is an introduction to plasma science. The following topics are presented during a semester:
Plasma state properties. Introduction to kinetic theory of gases. Motion of charged particles in electric and/or magnetic fields. Gas discharges. Electric arc plasma. Plasma radiation and introduction to the plasma diagnostics. Ther,odynamic and transport properties of plasmas. Low temperature plasmas. Introduction to the nuclear fusion. Plasma technology. Lecture on switching arc plasmas given by expert from industry.

Learning outcomes of the course unit

Graduates in the subject are able to:
- recognize characteristics of the plasma state and illustrate its properties;
- give examples of the plasma state either in nature or in industrial practice;
- demonstrate skills in a mathematical modeling of a plasma;
- use mathematical formulas for description of basic plasma processes;
- define kinetic processes in a plasma state;
- describe transport and thermodynamic properties in a plasma;
- describe collision processes in a plasma;
- analyse motion of charged particles in both electric and magnetic fields;
- characterize various gas discharges;
- describe DC and AC arc plasmas;
- recognize basic plasma diagnostic methods;
- explain principles of nuclear fusion as a source of energy.


The subject knowledge on the Bachelor´s degree level is requested.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

F. F. Chen: Úvod do fyziky plazmatu, Academia, Praha, 1984 (CS)
B. Gross, B. Grycz, K. Miklóssy: Technika plazmatu, SNTL, Praha, 1967 (CS)
B. Gross: Měření vysokých teplot, SNTL, Praha, 1962 (CS)
J. Kracík, J.B. Slavík, J. Tobiáš: Elektrické výboje, SNTL, Praha, 1964. (CS)
M. I. Boulous, P. Fauchais, E. Pfender: Thermal Plasmas - Fundamentals and Applications, Plenum Press, New York, 1994. (EN)
V. Aubrecht: Fyzika a diagnostika plazmatu, e-text, 2013, VUT v Brně (CS)

Planned learning activities and teaching methods

Techning methods include lectures, numerical seminars and practical laboratories. One lecture is given by a representative of an industrial company. Course is taking advantage of e-learning (Moodle) system. Students elaborate protocols of lab measurements, including individual numerical tasks.

Assesment methods and criteria linked to learning outcomes

- written test, up to 15 pts;
- numerical and laboratory projects, up to 45 pts;
- final written test, up to 40 pts

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction to plasma physic, history, basic parameters.
2. Plasma technology - introduction.
3. Charged particles motion.
4. Introduction to kinetic theory of gases.
5. Classification of gas discharges.
6. Electric arc, switching arc.
7. Plasma diagnostics.
8. Thermodynamic and transport properties of a plasma.
9. Non-isothermal plasma.
10. Plasma radiation.
11. Lasers.
12. Controlled thermonuclear fusion.
13. Summary, final test.


- to obtain an overall view of the plasma science of materials and applications to engineering;
- to develop problem solving skills in plasma technologies;
- to become aware of the role of plasma physics in industrial sphere;
- to recognize basic methods of plasma diagnostics in quenching chambers of switchgear, plasma torches and other plasma devices.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme MPC-BIO Master's, any year of study, winter semester, 5 credits, compulsory-optional
  • Programme MPC-EEN Master's, 1. year of study, winter semester, 5 credits, compulsory-optional
  • Programme MPC-SVE Master's, 1. year of study, winter semester, 5 credits, compulsory-optional
  • Programme MPC-EAK Master's, 1. year of study, winter semester, 5 credits, compulsory-optional