Course detail

Wireless Sensor Networks

FEKT-MSSYAcad. year: 2018/2019

The course aims to introduce the issues arising during development and deployment of the wireless sensor networks for the monitoring applications. In order to show the real bahaviour of the sensor hardware components, the training is divided into the Microprocessor (MCU ) and Wireless part. The prepared tutorials are tightly linked with specific WSN hardware, which is provided to the audience. In the MCU tutorials, the main principles of operations with the 8-bit AVR microcontroller are introduced, while in the Wireless tutorials, the audience learn how to develop WSN solution based on the Zigbee PRO specification.

Learning outcomes of the course unit

The students obtain knowledge about the wireless sensors, which are used in the home, building and transport automation- They will work with the Zigbee protocol and Atmel wireless nodes.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

FARAHANI, Shahin. Zigbee Wireless Networks and Transceivers. [s.l.] : Elsevier, 2008. 329 s. ISBN (EN)
Stojmenovic I., Handbook of Sensor Networks, Wiley,ISBN:13 978-0-471-68472-5, 2005. (EN)

Planned learning activities and teaching methods

Techning methods include lectures, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system. Students have to write a single project/assignment during the course.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every year.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1: Introduction
Technology WSN
WSN node architecture
AVR microprocessors
Registers
2: Timers
Interrupts
LCD displays
3: Serial communication
USART
SPI
I2C
4: Senzors
A/D Convertors
5: Basics of Wireless Transmissions
Physical Layer defined by IEEE 802.15.4
Network Coexistence
Rádio chip AT86RF230
6: Link layer defined by IEEE 802.15.4
CCA(Clear Channel Assesment)
Access Method CSMA/CA
Superframes
7: Energy Consumption
8: Zigbee protocol
Network layer and routing
9: Application layer and security
10: Localization od wireless nodes
11: Bluetooth, WiFi, WirelessHART
12: Presentation of companies

Aims

Introducing the course for the field of Electronics and Communication engineering is aimed at making the students familiar with the representative sensor systems, with their components and their practical exploitation. The students will obtain a fundamental theoretical orientation in the area of modern sensor technology and they will acquire some skills in design procedures by way of solving practical examples.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme IBEP-V Master's

    branch V-IBP , 1. year of study, summer semester, 6 credits, optional specialized

  • Programme EEKR-M1 Master's

    branch M1-TIT , 2. year of study, summer semester, 6 credits, optional specialized

  • Programme IBEP-V Master's

    branch V-IBP , 2. year of study, summer semester, 6 credits, optional specialized

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, summer semester, 6 credits, optional specialized

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Laboratory exercise

39 hours, compulsory

Teacher / Lecturer