Course detail

Embedded Systems for Industrial Control

FEKT-MPORAcad. year: 2018/2019

Basic terms: programming model, addressing modes, assembler, embedded peripherals, counters, timers, interrupt subsystem. Mapping and addressing of peripherals.
Peripherals: A/D and D/A converters, counters and timers, synchronous and asynchronous serial interface. Power elements. Intelligent display. Connection of external peripherals like memory, A/D and D/A converters, displays, keyboards. Buses I2C, 485 and 422. Programming techniques for embedded systems. Introduction to Real time OS. Introduction to Faul-tolerant systems.

Learning outcomes of the course unit

After the course student is able to:
- define of basic microcontroller system and its peripherals requirements
- describe of basic microcontroller system and its peripherals
- design of basic microcontroller system and its peripherals
- analyze of basic microcontroller system and its peripherals
- construct of basic microcontroller system and its peripherals
- review of basic microcontroller system and its peripherals
- utilize of basic microcontroller system and its peripherals
- program of basic microcontroller system and its peripherals


Student is able to: - explain of basic physical characteristics of passive and active components (resistor, inductor, capacitor, transistor, diode, LED, voltage regulator, transformer, optocoupler, XTAL, etc.) - calculate with basic electric characteristics - analyze of basic electric circuits - calculate the basic electric circuits - explain basic logic circuits - calculate with logic operations - simplify of logic functions - design of logic circuit - program in ISO C language - design the algorithms - program the algorithms - design the state machine (Moor, Mealy) - transform of state machine to algorithm - explain of basic computer terms (CPU, RAM, ROM, EPROM, etc.) - explain of basic computer architectures (Harvard, VonNeuman) - discuss the basic terms of probability and statistics - calculate with different numerical systems (HEX, octal, decimal, binary)


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Ličev L., Morkes D.: Procesory - architektura, funkce, použit, Computer press, Praha 1999 (CS)
Predko M.,: Handbook of microcontrolers, McGraw-Hill, ISBN 0079137164, 1998 (EN)

Planned learning activities and teaching methods

Techning methods include lectures and computer laboratories.Students have to write six small test and a single project/assignment during the course.

Assesment methods and criteria linked to learning outcomes

- up to 40 points from laboratory (six written tests per 5 point, one individual test on PC per 10 points)
- up to 60 points from examination (examination by test form)
- credit can by done, if student receive >= 20 point from laboratory tests

Language of instruction


Work placements

Not applicable.

Course curriculum

- Introduction to logic systems. Introduction to numeric systems. State machines.
- Microcontroller programming in ISO C. Computer structures.
- Microcontroller and its internal peripherals description – XTAL, timer/counter, UART, memory
- Introduction to microcontroller system design
- Introduction to peripheral devices – address decoder, PIO, alphanumerical display
- Introduction to peripheral devices – discrete PIO, secondary address decoder, matrix keyboard
- Introduction to I2C bus
- Introduction to I2C bus design – RTC, A/D, D/A, PIO, RAM, EEPROM
- Introduction to RT-OS
- Introduction to Fault-tolerant systems


Students achieve knowledge with micorcontroller and microprocessor architecture and connected peripherals and subsystems. Students acquire knowledge with sophisticated programming languages

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme EEKR-M1 Master's

    branch M1-KAM , 1. year of study, summer semester, 6 credits, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, summer semester, 6 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer

Laboratory exercise

39 hours, compulsory

Teacher / Lecturer