Course detail

Distributed Systems and Networks

FEKT-MDSSAcad. year: 2018/2019

Subject deals with modern problems in automation e.g. with distributed control systems. The main attention is given on the communication subsystem that creates the backbone of these systems. Students obtain practical experiences with industrial communication systems PROFIBUS, PROFINET, ETHERNET/IP, DeviceNet, RIO. Students obtain a deep and large view of open system interconnection, communication standards, proprietary communication systems and their implementation. Next part of the subject deals with distributed control systems DCS from the first control level as many as the operator level.

Learning outcomes of the course unit

After completition of the course students will be able to>
- describe layers of the OSI model,
- explain "communication in real time",
- list and briefly describe some of the deterministic communication solutions,
- describe most distinguishing features of RS-232, RS-485, CAN, AS-Interface, Modbus, Ethernet and Industrial Ethernet,
- explain basic principles of functional safety,
- briefly describe bacis security building blocks,
- discuss advantages and disadvantages of selected communication technologies,
- provide qualified guess on relevance of functional safety standards for a given application,
- based on given requirements select suitable communication technology for a given task.


Student who enrolls this course needs to be able to explain basic principles from physics and electronics related transmission lines and their loading (resistance, capacitance, inductance, impedance) and issues related to carrying of signals over the transmission lines; analyze simple electronic circuits with passive components and transistors; discuss basic issues in the field of probability and statistics; calculate probabilities of serial and parallel combination of components. In general electrical/electronic bachelor degree konowledge is expected, moreover it is recommended either to have previous experience with PLC programming or succesfull pass of courses like MAUP or BPGA.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Zezulka F.: Automatizační prostředky. Skriptum PC DIR, 2000. (CS)
Stallings W.: Handbook of Computer-Communication standards. Vol1. Macmillan Book, 1988 (EN)
Zezulka F.: Prostředky průmyslové automatizace. Vutium, 2004 (CS)

Planned learning activities and teaching methods

Techning methods include lectures and practical laboratories.

Assesment methods and criteria linked to learning outcomes

upto 30 points from laboratories
upto 70 (50+20) points from examination
Examination has two compulsary parts - written part and verbal part
To qualify for verbal part it is necessary to gain at least 24 points from the written one, no two questions from the written part can be evaluated as zero. To pass the exam it is necessary to gain at least 10 point in the verbal part.
Exam is focused to evaluate general knowledge in the field of serial communication technologies, fieldbuses, functional safety and security.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction into open communication. ISO/OSI model
2. Function of OSI layers. TCP/IP model. Active network components.
3. Low level interfaces RS-232, RS-485
4. Media access methods.
5. CAN bus and its physical layers (High speed, Low speed Fault tolerant, Single Wire)
6. AS-Interface
7. AS-Interface Safety at Work and introduction to functional safety
8. Functional Safety
9. Another fieldbuses (Profibus/Modbus)
10. Ethernet and Industrial Ethernet - how to achieve determinism
11. Security


The aim of the cource is to provide basic knowledge of serial communication interfaces, industrial communication buses including topics of functional safety and security.

Specification of controlled education, way of implementation and compensation for absences

Lab activities are compulsory, missed labs will be handled individually and usually can be performed according to lecturer's instructions (usually can be performed in the last week of semester).

Classification of course in study plans

  • Programme EEKR-M1 Master's

    branch M1-KAM , 1. year of study, summer semester, 5 credits, optional specialized

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, summer semester, 5 credits, optional specialized

Type of course unit



26 hours, optionally

Teacher / Lecturer

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer