Course detail

Matrices and Tensors Calculus

FEKT-MPC-MATAcad. year: 2019/2020

Matrices as algebraic structure. Matrix operations. Determinant. Matrices in systems of linear algebraic equations. Vector space, its basis and dimension. Coordinates and their transformation. Sum and intersection of vector spaces. Linear mapping of vector spaces and its matrix representation. Inner (dot) product, orthogonal projection and the best approximation element. Eigenvalues and eigenvectors. Spectral properties of (especially Hermitian) matrices. Bilinear and quadratic forms. Definitness of quadratic forms. Linear forms and tensors. Verious types of coordinates. Covariant, contravariant and mixed tensors. Tensor operations. Tensor and wedge products.Antilinear forms. Matrix formulation of quantum. Dirac notation. Bra and Ket vectors. Wave packets as vectors. Hermitian linear operator. Schrodinger equation. Uncertainty Principle and Heisenberg relation. Multi-qubit systems and quantum entaglement. Einstein-Podolsky-Rosen experiment-paradox. Quantum calculations. Density matrix. Quantum teleportation.

Learning outcomes of the course unit

Mastering basic techniques for solving tasks and problems from the matrices and tensors calculus and its applications.

Prerequisites

The knowledge of the content of the subject Matematika 1 is required. The previous attendance to the subject Matematický seminář is warmly recommended.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1. Matrices as algebraic structure. Matrix operations. Determinant.
2. Matrices in systems of linear algebraic equations.
3. Vector space, its basis and dimension. Coordinates and their transformation. Sum and intersection of vector spaces.
4. Linear mapping of vector spaces and its matrix representation.
5. Inner (dot) product, orthogonal projection and the best approximation element.
6. Eigenvalues and eigenvectors. Spectral properties of (especially Hermitian) matrices.
7. Bilinear and quadratic forms. Definitness of quadratic forms.
8. Linear forms and tensors. Verious types of coordinates. Covariant, contravariant and mixed tensors.
9. Tensor operations. Tensor and wedge products.Antilinear forms.
10. Matrix formulation of quantum. Dirac notation. Bra and Ket vectors. Wave packets as vectors.
11. Hermitian linear operator. Schrodinger equation. Uncertainty Principle and Heisenberg relation.
12. Multi-qubit systems and quantum entaglement. Einstein-Podolsky-Rosen experiment-paradox.
13. Quantum calculations. Density matrix. Quantum teleportation.

Aims

Master the bases of the matrices and tensors calculus and its applications.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme MPC-AUD Master's

    specialization AUDM-TECH , 1. year of study, summer semester, 5 credits, compulsory-optional
    specialization AUDM-ZVUK , 1. year of study, summer semester, 5 credits, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

seminars in computer labs

18 hours, compulsory

Teacher / Lecturer

The other activities

8 hours, optionally

Teacher / Lecturer