Course detail
Control Theory
FEKT-BPC-TRBAcad. year: 2018/2019
Mathematical models of dynamic systems, transfer functions, frequency- and step responses, stability and accuracy analysis of controlled systems. State space feedback control. Discrete control theory of linear systems. Design of feedback systems with analogue and digital controllers.
Supervisor
Learning outcomes of the course unit
Passed student is qualified:
- to understand relation between mathematical model of the system and its dynamic behavior
- to understand mutual relation of dynamic models in the form of differential equation, state equation and transfer function
- to explain behavior of frequency response and step response
- to derive stabiblity of a feedback system
- to design the proper feedback controller
Prerequisites
Student's necessary prerequisities are knowledge of mathematics (differential equations, Laplace transform) and from theory of analogue and digital circuits
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Ogata, K.: Modern Control Engineering, Prentice Hall
Franklin G., Powell D., Workman: Digital Control of Dynamic Systems,Addison-Wesley
Shinners, S.,M.:Advanced Modern Control System Theory and Design, Wiley
Skalický, J.: Teorie řízení, skripta FEKT, 2002
Planned learning activities and teaching methods
Teaching methods includes lectures and comnputer laboratories- specified in the article 7 of BUT Rules for Studies and Examinations.
Assesment methods and criteria linked to learning outcomes
Written examination
Student obtains: max 40 points for numeric and laboratory excersises and max 60 points for final examination.
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
1. Mathematical models of dynamic systems
2. Transfer functions, frequency responses, step responses
3. Transfer functions of basic members
4. Block diagrams of controlled systems
5. Description of dynamic systems in state space, status matrices
6. Feedback systems, basic transfers control loops, regulation accuracy.
7. Stability of feedback systems
8. Synthesis of classical regulators
9. Branched control circuits - cascade regulation, feedforward etc..
10. Numerical realization of classical regulators - discretization of PID control algorithm.
11. Block diagram of electric drive, sensors, motors
12. State-space feedback control
13. Implementation of microprocessor control (DSP)
Aims
To introduce with a control theory of linear systems as a mathematical background for design of automated systems
Specification of controlled education, way of implementation and compensation for absences
Computer laboratory is mandatory
Compensation of an absence at laboratory after lecturer's recommendat
Classification of course in study plans
- Programme BPC-SEE Bachelor's, 2. year of study, summer semester, 6 credits, compulsory