Course detail
Numerical Mathematics I
FSI-9NM1Acad. year: 2017/2018
The introductory course of numerical methods deals with following topics: scientific computing, direct and iterative methods for linear systems, interpolation, least squares, differentiation and quadrature, eigenvalues, zeros and roots,.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
C.B. Moler: Numerical Computing with Matlab, Siam, Philadelphia, 2004.
C.F. Van Loan, G.H. Golub: Matrix Computations, 3th ed., the Johns Hopkins University Press, Baltimore, 1996.
G. Dahlquist, A. Bjork: Numerical Methods. Prentice-Hall, 1974
M.T. Heath: Scientific Computing. An Introductory Survey. Second edition. McGraw-Hill, New York, 2002.
Recommended reading
E. Vitásek: Numerické metody. SNTL, Praha, 1987
I. Horová, J. Zelinka: Numerické metody, učební text Masarykovy univerzity, Brno, 2004.
K. Rektorys: Přehled užité matematiky. Prometheus, Praha, 1995
L. Čermák, R. Hlavička: Numerické metody. Učební text FSI VUT Brno, CERM, 2016.
L. Čermák: Vybrané statě z numerických metod. https://mathonline.fme.vutbr.cz/Numericke-metody-I/sc-1150-sr-1-a-141/default.aspx
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Introduction to numerical mathematics: foundation of matrix analysis, errors, conditionning of problems and algorithms.
2. Direct methods for solving linear systems: Gaussian elimination method, pivoting, LU decomposition, Cholesky decomposition, conditioning.
3. Iterative methods for solving linear systems: classical iterative methods (Jacobi, Gauss-Seidel, SOR, SSOR), generalized minimum rezidual method, conjugate gradient method.
4. Interpolation: Lagrange, Newton and Hermite interpolation polynomial, interpolating splines.
5. Least squares method: data fitting, solving overdetermined systems (QR factorization, pseudoinverse, orthogonalization methods).
6. Numerical differentiation: basic formulas, Richardson extrapolation.
7. Numerical integration: Newton-Cotes formulas, Gaussian formulas, adaptive integration.
8. Solving nonlinear equations in one dimension (bisection method, Newton's method, secant method, false position method, inverse quadratic interpolation, Brent method); solving nonlinear systems (Newton's method and its variants, fixed point iteration).
9. Eigenvalues and eigenvectors: power method, QR method.
10. Eigenvalues and eigenvectors: Arnoldi method, Jacobi method, bisection method, computing the singular value decomposition.