Course detail

Earth Working Machinery

FSI-QZEAcad. year: 2017/2018

The course makes students acquainted with the work technology of earthmoving machines, types of earth machines, design of earthmoving machine drives, and the latest technology of control and check of earthmoving machines.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will be able to design a conception of earthmoving machines, force proportion on working device with respect to work technology; they will be able to design geometry and kinematics of working device of earthmoving machine. They will also design optimal technological machine groups for carrying out earthwork and determine their theoretical, technical and operational reliability.

Prerequisites

Students are required to have basic knowledge of physics, machine parts and their mechanism and physics of materials.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. Part of the course can be excursions to the companies, which manufacture or operate the equipments from the thematic area of education.

Assesment methods and criteria linked to learning outcomes

The exam includes oral and written parts. It verifies the knowledge acquired in the course and abilities to apply it in practice.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of this course is make students acquainted with work technology of earthmoving machines, types of earthmoving machines according to constructional groups, and common constructional dispose of earthmoving machines. Students will become familiar with design of working and travel devices according to force requirements, and the latest technology of control and check of earthmoving machines.

Specification of controlled education, way of implementation and compensation for absences

Course-unit credit is awarded on condition of having attended the exercises actively and worked out assigned projects. Presence in the exercises is obligatory.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

VANĚK, Antonín. Moderní strojní technika a technologie zemních prací. Praha: Academia, 2003. Česká matice technická (Academia). ISBN 8020010459. (CS)
Nichols, H. L. - Day D. A.: Moving The Earth: The Workbook of Excavation, Sixth Edition, McGraw-Hill Professional; 6 edition 2010, ISBN 978-0071502672 (EN)

Recommended reading

Nichols, H. L. - Day D. A.: Moving The Earth: The Workbook of Excavation, Sixth Edition, McGraw-Hill Professional; 6 edition 2010, ISBN 978-0071502672
Vaněk, A.: Moderní strojní technika a technologie zemních prací, vyd. Acamedia, Praha, ISBN 80-200-1045-9, 2003

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-ADI , 1. year of study, summer semester, compulsory
    branch M-ADI , 1. year of study, summer semester, compulsory-optional

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1. Technology of earth work, classification of earthmoving machines.
2. Main constructional groups of machines.
3. Technical properties of earths.
4. Methods of earths disintegration and their energy demands.
5. Force effects between earth and tool.
6. Driving devices of earthmoving machines, determination of engine power.
7. Hydrodynamic gear.
8. Hydrostatic gear.
9. Hydraulic system of earthmoving machines.
10. Chassis of earthmoving machines.
11. Transmission of forces between chassis of earthmoving machine and earth.
12. Hydrostatic servo-mechanism of earthmoving machines.
13. Brake system of earthmoving machines, cooling system of earthmoving machines.

Exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

1. Technical assignment and development of wheel loader.
2. Determination of climatic variant marking of multipurpose front loader for area of expected purpose.
3. Determination of technical properties of earths.
4. Calculation of working machines resistances.
5. Evaluation of cooperation between combustion engine and moment converter and calculation of moving forces and machine speed.
6. Evaluation of earthmoving machine engine power.
7. Design of hydraulic generators for circuit of working hydraulics.
8. Calculation of joint loading bearing of wheel loader chassis.
9. Calculation of steering moment and speed-torque characteristic of wheel loader with joint frame.
10. Calculation of movement resistances of caterpillar chassis of excavator.
11. Design of hydraulic generator for servo-mechanism circuit.
12. Calculation of loader’s brakes.
13. Calculation of loss and heat formation in circuit of working hydraulics and servo-mechanism, evaluation of hydraulic circuit cooling of earthmoving machine.