Course detail

Wireless Communication Theory

FEKT-NTRKAcad. year: 2015/2016

The course addresses the theoretical apsects of modern radi communication theory. It emphasizes on the comprehension of principles of operation of communication systems. The students significantly improve their knowledge in the area of signal processing applied in communication theory, e.g. the algorithms of signal detection and signal space representation. Students get detailed informations about transmission over fading channel, transmission using the spread spectrum principe and using the OFDM technique. Moreover the students get knowledge on the advanced coding principles - e.g. the turbo and LDPC codes. During the practical computer ecxercises, the students verify the theoretical knowledge using the MATLAB computer simulations.

Learning outcomes of the course unit

The graduate of the course is able to:
- represent the signal in the signal space
- choose a suitable filter for intersymbol interference reduction
- discuss the method of Bayesian statistical detector
- explain the principles of modulation techniques
- create a MATLAB program simulating the principles of digital communication theory
- illustrate the structure of OFDM modulator and demodulator
- compute the output of a block space-time coder

Prerequisites

The student who registers the course should be able to explain the basic terms from the area of probability and statistics, describe mathematicaly basic analogue and digital modulation techniques, create a simple program in the MATLAB environment, compute the response of linear systems to input, discuss the basic terminology and methods from the signal processing theory

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

CHIEN, Ch. Digital Radio Systems on a Chip. A system approach. Norwell: Kluwer Academic Publishers, 2001. 533 s. ISBN 0-7923-7260-3. (EN)
PROAKIS John G. Digital Communications. 3. vyd. New York: Mc.Graw-Hill Book, 1995. 928 s. ISBN 0-07-051726-6. (EN)
HAYKIN, S. Digital Communications, John Wiley & sons, 1998, 597 s., ISBN 0-471-62947-2. (EN)

Planned learning activities and teaching methods

Teaching methods include lectures and computer laboratories in MATLAB simulation software.

Assesment methods and criteria linked to learning outcomes

up to 15 points for computer in-class excercises
up to 15 points for written test during semester
up to 70 points for final exam

Language of instruction

English

Work placements

Not applicable.

Course curriculum

Lectures:

1. Radio communication system, radio communication signals, complex envelope
2. Channel capacity, information theory
3. Intersymbol interferences, signal shaping, receiver filter
4. Detection of radio communication signals, hypothesis testing, AWGN channel
5. PSK, BPSK, DPSK, QPSK, OQPSK
6. MQAM, MSK, GMSK, CPM - modulation, demodulation, applications
7. Spread spectrum systems I - DSSS, FHSS, spreading sequences
8. Spread spectrum systems I - rake receiver, synchronization
9. Communication channel characteristics, equalizers, nonlinear channels, UWB communications
10. OFDM - principle, modulation using IFFT, cyclic prefix and orthogonality, applications in IEEE 802.11a,g. UW-OFDM and SC-FDMA, application in LTE
11. Synchronization and equalization, MB-OFDM and MC-CDMA systems
12. Block and convolutional codes, cyclic codes, turbo codes, concatenated codes, LDPC codes
13. MIMO systems, space time coding, singular decomposition, Alamouti code, TCM

Computer in-class excercises

1. Complex envelope
2. ISI
3. Optimal receiver
4. Synchronization
5. CDMA
6. OFDM - principle
7. Radio channel
8. RF chain
9. OFDM II - influnce of RF parameters
10. UWB principles
11. Coding
12. test

Aims

The aim of the course is to make students familiar with the wireless communication link, representation of information, signal detection, methods of intersymbol interference supression, advanced coding techniques coding, fading channel characteristics, amplitude and phase keying and with properties of communication systems OFDM, CDMA and UWB.

Specification of controlled education, way of implementation and compensation for absences

the computer in-class excercises are compulsory

Classification of course in study plans

  • Programme EEKR-MN Master's

    branch MN-EST , 1. year of study, winter semester, 6 credits, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Computer exercise

26 hours, compulsory

Teacher / Lecturer