Course detail
Methods of analog integrated circuits design
FEKT-MNAIAcad. year: 2015/2016
The course deals with moderately advanced methods of analog integrated circuits with respect to a more detailed understanding of the parasitic effects in terms of accuracy and noise. Used technologies (bipolar, CMOS and BiCMOS).
The course content is:
- Design and simulation of a small analog system
- Methods for accurate design, calculation of matching (Matching Analysis)
- Noise analysis in theory and in practice
Practically-oriented exercises on real precision low-noise design of analog circuits.
Computer exercises with usage of the advanced software packages (Cadence).
Supervisor
Department
Learning outcomes of the course unit
After the course the student is able to:
- design a simple analog system (trained on analog circuitry for a switching power supply source controller)
- understand, explain and perform design and analysis of accurate analog integrated circuit (precise operational amplifier, precise voltage reference, precise current reference)
- design, analyze and optimize analog integrated circuit with regard to low noise requirements
(Emphasis will be placed on practical skills (engineering calculation, verification simulation).
Prerequisites
The knowledge on the Bachelor´s degree level is requested. Students should be able to explain and work with the basic electrical engineering principles and laws, in particular the theory of circuits (circuit variables, Ohm's law, Kirchhoff's laws). The advantage is the prior completion of the course MAIO (design and analysis of current mirrors, operational amplifiers, voltage bandgap references, etc.)
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Baker, J.R.:"CMOS circuit design, layout and simulation", IEEE Press a Wiley Interscience, ISBN 0-471-70055-X, 2005 (EN)
Razavi:"Design of analog integrated circuits", McGraw-Hill, ISBN 0-07-238032-2, 2001 (EN)
Razavi, B.:"RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series), Oct. 2011, ISBN:978-0-13-713473-1 (EN)
Planned learning activities and teaching methods
Techning methods include lectures and numerical laboratories including computer simulations.
Assesment methods and criteria linked to learning outcomes
Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.
usually:
- 30 points for two written tests during semester
- 70 points for the final exam (written test + oral correction)
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
1) PWM OSCILLATOR CONTROLLER BLOCK
- BG reference
- Current reference
- Vcc clamp (parallel controller)
- V-> I converter with thermally stable offset
- Double-ramp oscillator with VCO characteristics
- Vcc reset
- Vcc management (UVLO circuits)
- Error circuits
2) THE BASIS OF THE PRECISION CIRCUITS DESIGN
- The main concept of the precise design
- Basic equations for error calculation in analog circuits
- Method of Monte Carlo
- Precise transistor pair
- Accurate current mirror
- The precise differential stage (MOS / bipolar, resistive/active load)
- Accurate two-stage operational amplifier
- Error Calculation using the match nomogram
3) NOISE
- Definition of noise density and integral noise value and their relationship
- Correlated and uncorrelated noise contribution
- Noise characterization of active element
- Resistor noise and BJT noise
- The equivalent bipolar transistor input noise
- MOS transistor noise, equivalent MOS transistor input noise
- Basic concept of low-noise design
- Designl of a low-noise differential stage (MOS, bipolar)
- Noise of the differential stage with active load
4) DESIGN OF THE PRECISE LOW NOISE BG REFERENCE
- Basic principle of accurate BG reference
- Identification of dominant error contributions
- Multiple dVbe principle
- Precise low-noise BG reference without additional filtration
- Precise low-noise BG reference with bypass capacitance
- Bypass capacitance pre-charge circuits
5) DESIGN OF THE PRECISE LOW-NOISE OPERATIONAL AMPLIFIER
- Calculation / simulation of the precise OPAMP minimum offset in MOS and BJT process
- Calculation / simulation of the precise OPAMP minimum noise in MOS and BJT process
- Design of the precise OPAMP second stage (parallel / Miller frequency compensation)
- Calculation of the noise and errors of the OPAMP second stage
- Design of the precise OPMAP first stage
- Frequency compensation, phase margin optimization
Aims
The aim is to provide students with the orientation of advanced design methods of modern analog functional blocks for integrated circuits. Emphasis is put on the design of the precise low noise circuits. Students also learn to work with a professional design environment CADENCE at such a level that they will be able to design and draw a basic analog circuits and simple systems and simulate them using basic types of analysis.
Specification of controlled education, way of implementation and compensation for absences
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Usually: Credit is conditional upon attendance in computer labs
Classification of course in study plans
- Programme EEKR-M Master's
branch M-MEL , 2. year of study, winter semester, 6 credits, compulsory
- Programme EEKR-M1 Master's
branch M1-MEL , 2. year of study, winter semester, 6 credits, compulsory
- Programme EEKR-CZV lifelong learning
branch ET-CZV , 1. year of study, winter semester, 6 credits, compulsory
Type of course unit
Exercise in computer lab
39 hours, compulsory
Teacher / Lecturer